Появление первых квантовых дальномеров. Военная история, оружие, старые и военные карты Наводить включенный дальномер на людей

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

КУРСОВАЯ РАБОТА

по дисциплине

«Физические основы измерений»

Тема: Дальномер

№ студенческой группы исполнителя – ЭС-2-08

Фамилия И. О. исполнителя – Прусаков А. А.

Фамилия И. О. руководителя – Русанов К. Е.

Москва 2010

    Введение ______________________________________________________3

2. Виды дальномеров ______________________________________________5

3. Лазерный дальномер _____________________________________________6

3.1. Физические основы измерений и принцип действия _________________8

3.2 Особенности конструкции и принцип работы. Виды и применение ____12

4. Оптический дальномер __________________________________________19

4.1. Физические основы измерений и принцип действия ________________21

4.1.2 Нитяной дальномер с постоянным углом ________________________23

4.1.3 Измерение нитяным дальномером наклонного расстояния __________25

4.2 Особенности конструкции и принцип работы ______________________27

5. Вывод ________________________________________________________29

6. Библиографический список ______________________________________30

1. Введение

Дальномер - устройство, предназначенное для определения расстояния от наблюдателя до объекта. Используется вгеодезии, для наводки на резкость вфотографии, в прицельных приспособленияхоружия, систем бомбометания и т.д.

Геоде́зия - отрасль производства, связанная с измерениями на местности. Является неотъемлемой частью строительных работ. С помощью геодезии проекты зданий и сооружений переносятся с бумаги в натуру с миллиметровой точностью, рассчитываются объемы материалов, ведется контроль за соблюдением геометрических параметров конструкций. Также находит применение вгорном деле для расчетавзрывных работ и объемов породы.

Основные задачи геодезии:

Среди многих задач геодезии можно выделить «долговременные задачи» и «задачи на ближайшие годы».

К долговременным задачам относятся:

    определение фигуры, размеров и гравитационного поля Земли;

    распространение единой системы координат на территорию отдельного государства, континента и всей Земли в целом;

    выполнение измерений на поверхности земли;

    изображение участков поверхности земли на топографических картах и планах;

    изучение глобальных смещений блоков земной коры.

В настоящее время основные задачи на ближайшие годы в России следующие:

    создание государственных и локальных кадастров:земельногонедвижимостиводноголесного, городского и т. д.;

    топографо-геодезическое обеспечение делимитации (определения) и демаркации (обозначения) государственной границы России;

    разработка и внедрение стандартов в области цифрового картографирования;

    создание цифровых и электронных карт и их банков данных;

    разработка концепции и государственной программы повсеместного перехода на спутниковые методы автономного определения координат;

    создание комплексного национального атласа России и другие.

Лазерная дальнометрия является одной из первых областей практического применения лазеров в зарубежной военной технике. Первые опыты относятся к 1961 году, а сейчас лазерные дальномеры используются и в наземной военной технике (артиллерийские, таковые), и в авиации (дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят на вооружение во многих армиях мира.

Рис. 2 - Лазерный прицел-дальномер. Впервые применялся на Т72А

2. Виды дальномеров

Дальномерные приспособления делятся на активные и пассивные:

    активные:

    • звуковой дальномер

      световой дальномер

      лазерный дальномер

    пассивные:

    • дальномеры, использующие оптическийпараллаксдальномерный фотоаппарат)

      дальномеры, использующие сопоставление объекта какому-либо образцу

Принцип действия дальномеров активного типа состоит в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Скорость распространения сигнала (скорость света или звука) считается известной.

Измерение расстояний дальномерами пассивного типа основано на определении высоты h равнобедренного треугольника ABC, например по известной стороне AB = l (базе) и противолежащему острому углу b (т. н. параллактическому углу). При малых углах b (выраженных в радианах)

Одна из величин, l или b, обычно является постоянной, а другая - переменной (измеряемой). По этому признаку различают дальномеры с постоянным углом и дальномеры с постоянной базой.

3. Лазерный дальномер

Лазерный дальномер - прибо р для измерения расстояний с применениемлазерного луча.

Широко применяется в инженернойгеодезии, притопографической съёмкевоенном деленавигации, вастрономических исследованиях, в фотографии.

Лазерный дальномер это устройство, состоящее изимпульсного лазера идетектора излучения. Измеряя время, которое затрачивает луч на путь до отражателя и обратно и зная значениескорости света, можно рассчитать расстояние между лазером и отражающим объектом.

Рис.1 Современные модели лазерных дальномеров.

электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

где L - расстояние до объекта,скорость света в вакуумепоказатель преломления среды, в которой распространяется излучение, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше.

3.1. Физические основы измерений и принцип действия

Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отражения от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазово-импульсный. Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылается зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, то он останавливает работу счетчика. По временному интервалу автоматически высвечивается перед оператором расстояние до объекта. Оценим точность такого метода дальнометрирования, если известно, что точность измерения интервала времени между зондирующим и отраженным сигналами соответствует 10 в -9 с. Поскольку можно считать, что скорость света равна 3*10в10 см/с, получим погрешность в изменении расстояния около 30 см. Специалисты считают, что для решения ряда практических задач этого вполне достаточно.

При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону. При этом интенсивность излучения меняется в значительных пределах. В зависимости от дальности до объекта изменяется фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет на приемное устройство также с определенной фазой, зависящей от расстояния. Оценим погрешность фазового дальномера, пригодного работать в полевых условиях. Специалисты утверждают, что оператору не сложно определить фазу с ошибкой не более одного градуса. Если же частота модуляции лазерного излучения составляет 10 Мгц, то тогда погрешность измерения расстояния составит около 5 см.

По принципу действия дальномеры подразделяются на две основные группы, геометрического и физического типов.

Рис.2 Принцип действия дальномера

Первую группу составляют геометрические дальномеры. Измерение расстояний дальномером такого типа основано на определении высоты h равнобедренного треугольника ABC (рис. 3) например по известной стороне АВ = I (базе) и противолежащему острому углу. Одна из величин, I обычно является постоянной, а другая - переменной (измеряемой). По этому признаку различают дальномеры с постоянным углом и дальномеры с постоянной базой. Дальномер с постоянным углом представляет собой подзорную трубу с двумя параллельными нитями в поле зрения, а базой служит переносная рейка с равноотстоящими делениями. Измеряемое дальномером расстояние до базы пропорционально числу делений рейки, видимых в зрительную трубу между нитями. По такому принципу работают многие геодезические инструменты (теодолиты, нивелиры и др.). Относительная погрешность нитяного дальномера - 0,3-1%. Более сложные оптические дальномеры с постоянной базой, построены на принципе совмещения изображений объекта, построенными лучами прошедшими различные оптические системы дальномера. Совмещение производится с помощью оптического компенсатора, расположенного в одной из оптических систем, а результат измерения прочитывается по специальной шкале. Монокулярные дальномеры с базой 3-10 см широко применяются в качестве фотографических дальномеров. Погрешность оптических дальномеров с постоянной базой менее 0,1% от измеряемого расстояния.

Принцип действия дальномера физического типа состоит в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Различают импульсный и фазовый методы измерения дальности.

При импульсном методе к объекту посылается зондирующий импульс, который запускает временной счетчик в дальномере. Когда отраженный объектом импульс возвращается к дальномеру, то он останавливает работу счетчика. По временному интервалу (задержке отраженного импульса), с помощью встроенного микропроцессора, определяется расстояние до объекта:

где: L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рис. 3 - Принцип действия дальномера геометрического типа
АВ -база, h -измеряемое расстояние

При фазовом методе - излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, меняющего свои параметры под воздействием электрического сигнала). Отраженное излучение попадает в фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, измеряется расстояние до объекта.

3.2 Особенности конструкции и принцип работы. Виды и применение

Первый лазерный дальномер ХМ-23 прошел испытания, и был принят на вооружение армий. Он рассчитан на использование в передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем является лазер на рубине с выходной мощностью 2.5 Вт и длительностью импульса 30нс. В конструкции дальномера широко используются интегральные схемы. Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отчета азимута и угла места цели. Питание дальномера производится то батареи никелево-кадмиевых аккумуляторов напряжением 24в, обеспечивающей 100 измерений дальности без подзарядки. В другом артиллерийской дальномере, также принятом на вооружение армий, имеется устройство для одновременного определения дальности до четырех целей., лежащих на одной прямой, путем последовательного стробирования дистанций 200,600,1000, 2000 и 3000м.

Интересен шведский лазерный дальномер. Он предназначен для использования в системах управления огнем бортовой корабельной и береговой артиллерии. Конструкция дальномера отличается особой прочностью, что позволяет применять его в сложенных условиях. Дальномер можно сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режим работы дальномера предусматривает либо измерения через каждые 2с. в течение 20с. и с паузой между серией измерений в течение 20с. либо через каждые 4с. в течение длительного времени. Цифровые индикаторы дальности работают таким образом, что когда один из индикаторов выдает последнюю измеренную дальность, и в памяти другого хранятся четыре предыдущие измерения дистанции.

Весьма удачным лазерным дальномерам является LP-4. Он имеет в качестве модулятора добротности оптико-механический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр входной оптической системы составляет 70мм. Приемником служит портативный фотодиод, чувствительность которого имеет максимальное значение на волне 1,06 мкм. Счетчик снабжен схемой стробирования по дальности, действующей по установке оператора от 200 до 3000м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза оператора от воздействия своего лазера при приеме отраженного импульса. Излучатель в приемник смонтированы в одном корпусе. Угол места цели определяется в пределах + 25 градусов. Аккумулятор обеспечивает 150 измерений дальности без подзарядки, его масса всего 1 кг. Дальномер прошел испытания и был закуплен в ряде стран таких как - Канада, Швеция, Дания, Италия, Австралия. Кроме того, министерство обороны Великобритании заключило контракт на поставку английской армии модифицированного дальномера LP-4 массой в 4.4.кг.

Портативные лазерные дальномеры разработаны для пехотных подразделений и передовых артиллерийской наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе, с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется аллюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1,5 Мвт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью, составляющей всего 10 в -9 Вт. Ложные сигналы, отраженные от близлежащих предметов, находящихся в стволе с целью, исключается с помощью схемы стробирования по дальности. Источником питания является малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных и гибридных схемах, что позволило довести массу дальномера вместе с источником питания до 2 кг.

Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков военного вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. Для этого был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако помимо выдачи данных о дальности на цифровое табло в счетно-решающее устройство системы управления огнем танка. При этом измерение дальности может производится как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа. Зарубежная печать сообщает, что более совершенный дальномер, разработанный позднее, имеет пределы измерения дальности от 200 до 4700м. с точностью + 10 м, и счетно-решающее устройство, связанное с системой управления огнем танка, где совместно с другими данными обрабатывается еще 9 видов данных о боеприпасах. Это, по мнению разработчиков, дает возможность поражать цель с первого выстрела. Система управления огнем танковой пушки имеет в качестве дальномера аналог, рассмотренный ранее, но в нее входят еще семь чувственных датчиков и оптический прицел. Название установки Кобельда. В печати сообщается что она обеспечивает высокую вероятность поражения цели и несмотря на сложность этой установки переключатель механизма баллистики в положение, соответствующее выбранному типу выстрела, а затем нажать кнопку лазерного дальномера. При ведении огня по подвижной цели наводчик дополнительно опускает блокировочный переключатель управления огнем для того, чтобы сигнал от датчика скорости поворота башни при слежении за целью поступал за тахометром в вычислительное устройство, помогая вырабатывать сигнал учреждения. Лазерный дальномер, входящий в систему Кобельда, позволяет измерять дальность одновременно до двух целей, расположенных в створе. Система отличается быстродействием, что позволяет произвести выстрел в кратчайшее время.

Анализ графиков показывает, что использование системы с лазерным дальномером и ЭВМ обеспечивает вероятность поражения цели близкую к расчетной. Графики также показывают, насколько повышается вероятность поражения движущейся цели. Если для неподвижных целей вероятность поражения при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером не составляет большой разницы на дистанции около 1000м, и ощущается лишь на дальности 1500м, и более, то для движущихся целей выигрыш явный. Видно, что вероятность поражения движущейся цели при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером уже на дистанции 100м, повышается более чем в 3,5 раза, а на дальности 2000м., где система со стереодальномером становиться практически неэффективной, лазерная система обеспечивает вероятность поражения с первого выстрела около 0,3.

В армиях, помимо артиллерии и танков, лазерные дальномеры используются в системах, где требуется в короткий промежуток времени определить дальность с высокой точностью. Так, в печати сообщалось в разработана автоматическая система сопровождения воздушных целей и измерения дальности до них. Система позволяет производить точное измерение азимута, угла места и дальности. Данные могут быть записаны на магнитную ленту и обработаны на ЭВМ. Система имеет небольшие размеры и массу и размещается на подвижном фургоне. В систему входит лазер, работающий в инфракрасном диапазоне. Приемное устройство с инфракрасной телевизионной камерой, телевизионное контрольное устройство, следящее зеркало с сервопроводом, цифровой индикатор и записывающее устройство. Лазерное устройство на неодимовом стекле работает в режиме модулированной добротности и излучает энергию на волне 1,06 мкм. Мощность излучения составляет 1 Мвт в импульсе при длительности 25нс и частоте следования импульсов 100 Гц. Расходимость лазерного луча 10 мрад. В каналах сопровождения используются различные типы фотодетекторов. В приемном устройстве используется кремниевый светодиод. В канале сопровождения - решетка, состоящая из четырех фотодиодов, с помощью которых вырабатывается сигнал рассогласования при смещении цели в сторону от оси визирования по азимуту и углу места. Сигнал с каждого приемника поступает на видеоусилитель с логарифмической характеристикой и динамическим диапазоном 60 дБ. Минимальной пороговый сигнал при котором система следит за целью составляет 5*10в-8Вт. Зеркало слежения за целью приводится в движение по азимуту и углу места сервомоторами. Система слежения позволяет определять местоположение воздушных целей на удалении до 19 км. при этом точность сопровождения целей, определяемая экспериментально составляет 0,1 мрад. по азимуту и 0,2 мрад по углу места цели. Точность измерения дальности + 15 см.

Лазерные дальномеры на рубине и неодимовом стекле обеспечивают измерение расстояния до неподвижной или медленно перемещающихся объектов, поскольку частота следования импульсов небольшая. Не более одного герца. Если нужно измерять небольшие расстояния, но с большей частотой циклов измерений, то используют фазовые дальномеры с излучателем на полупроводниковых лазерах. В них в качестве источника применяется, как правило, арсенид галлия. Вот характеристика одного из дальномеров: выходная мощность 6,5 Вт в импульсе, длительность которого равна 0,2 мкс, а частота следования импульсов 20 кГц. Расходимость луча лазера составляет 350*160 мрад т.е. напоминает лепесток. При необходимости угловая расходимость луча может быть уменьшена до 2 мрад. Приемное устройство состоит из оптической системы, а фокальной плоскости которой расположена диафрагма, ограничивающая поле зрения приемника в нужном размере. Коллимация выполняется короткофокусной линзой, расположенной за диафрагмой. Рабочая длина волны составляет 0,902 мкм, а дальность действия от 0 до 400м. В печати сообщается, что эти характеристики значительно улучшены в более поздних разработках. Так, например уже разработан лазерный дальномер с дальностью действия 1500м. и точностью измерения расстояния + 30м. Этот дальномер имеет частоту следования 12,5 кГц при длительности импульсов 1 мкс. Другой дальномер, разработанный в США имеет диапазон измерения дальности от 30 до 6400м. Мощность в импульсе 100Вт, а частота следования импульсов составляет 1000 Гц.

Поскольку применяется несколько типов дальномеров, то наметилась тенденция унификации лазерных систем в виде отдельных модулей. Это упрощает их сборку, а также замену отдельных модулей в процессе эксплуатации. По оценкам специалистов, модульная конструкция лазерного дальномера обеспечивает максимум надежности и ремонтопригодности в полевых условиях.

Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора. модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или аллюминиево-натриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все эти элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить их быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндрического корпуса. Осветитель диффузионного типа представляет собой два входящих один в другой цилиндра между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную устойчивую работу или на импульсную с быстрым запусками. основные данные унифицированной головки таковы: длина волны - 1,06 мкм, энергия накачки - 25 Дж, энергия выходного импульса - 0,2 Дж, длительность импульса 25нс, частота следования импульсов 0,33 Гц в течение 12с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5*10 в -8 Вт.

В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из афокального телескопа для уменьшения расходимости лазерного луча и фокусирующего объектива для фотоприемника. Фотодиоды имеют диаметр активной площадки 50, 100, и 200 мкм. Значительному уменьшению габаритов способствует то, что приемная и передающая оптические системы совмещены, причем центральная часть используется для формирования излучения передатчика, а периферийная часть - для приема отраженного от цели сигнала.

4. Оптический дальномер

Оптические дальномеры- обобщенное название группы дальномеров с визуальной наводкой на объект (цель), действие которых основано на использовании законов геометрической (лучевой) оптики. Распространены оптические дальномеры: с постоянным углом и выносной базой (например, нитяной дальномер, которым снабжают многие геодезические инструменты - теодолиты, нивелиры и т. д.); с постоянной внутренней базой - монокулярные (например, фотографический дальномер) и бинокулярные (стереоскопические дальномеры).

Оптический дальномер (светодальномер) - прибор для измерения расстояний по времени прохождения оптическим излучением (светом) измеряемого расстояния. Оптический дальномер содержит источник оптического излучения, устройство управления его параметрами, передающую и приёмную системы, фотоприёмное устройство и устройство измерения временных интервалов. Оптический дальномер делятся на импульсные и фазовые в зависимости от методов определения времени прохождения излучением расстояния от объекта и обратно.

Рис. 4 – Современный оптический дальномер

Рис.5 – Оптический дальномер типа «Чайка»

В дальномерах измеряется не сама длина линии, а некоторая другая величина, относительно которой длина линии является функцией.

Как ранее говорилось, в геодезии применяют 3 вида дальномеров:

    оптические (дальномеры геометрического типа),

    электрооптические (светодальномеры),

    радиотехнические (радиодальномеры).

4.1. Физические основы измерений и принцип действия

Рис. 6 Геометрическая схема оптических дальномеров

Пусть требуется найти расстояние АВ. Поместим в точку А оптический дальномер, а в точку В перпендикулярно линии АВ - рейку.

Обозначим: l - отрезок рейки GM,
φ - угол, под которым этот отрезок виден из точки А.

Из треугольника АGВ имеем:

D=1/2*ctg(φ/2) (4.1.1)

D = l * сtg(φ) (4.1.2)

Обычно угол φ небольшой (до 1 o) , и, применяя разложение функции Ctgφ в ряд, можно привести формулу (4.1.1) к виду (4.1.2). В правой части этих формул два аргумента, относительно которых расстояние D является функцией. Если один из аргументов имеет постоянное значение, то для нахождения расстояния D достаточно измерить только одну величину. В зависимости от того, какая величина - φ или l, - принята постоянной, различают дальномеры с постоянным углом и дальномеры с постоянным базисом.

В дальномере с постоянным углом измеряют отрезок l, а угол φ - постоянный; он называется диастимометрическим углом.

В дальномерах с постоянным базисом измеряют угол φ, который называется параллактическим углом; отрезок l имеет постоянную известную длину и называется базисом.

4.1.2 Нитяной дальномер с постоянным углом

В сетке нитей зрительных труб, как правило, имеются две дополнительные горизонтальные нити, расположенные по обе стороны от центра сетки нитей на равных расстояниях от него; это - дальномерные нити (рис.7).

Нарисуем ход лучей, проходящих через дальномерные нити в трубе Кеплера с внешней фокусировкой. Прибор установлен над точкой А; в точке В находится рейка, установленная перпендикулярно визирной линии трубы. Требуется найти расстояние между точками А и В.

Рис. 7 - Дальномерные нити

Построим ход лучей из точек m и g дальномерных нитей. Лучи из точек m и g, идущие параллельно оптической оси, после преломления на линзе объектива пересекут эту ось в точке переднего фокуса F и попадут в точки М и G рейки. Расстояние от точки A до точки B будет равно:

D = l/2 * Ctg(φ/2) + fоб + d (4.1.2.1)

где d - расстояние от центра объектива до оси вращения теодолита;
f об -фокусное расстояние объектива;
l - длина отрезка MG на рейке.

Обозначим (f об + d) через c, а величину 1/2*Ctg φ/2 - через С, тогда

D = C * l + c. (4.1.2.2)

Постоянная С называется коэффицентом дальномера. Из Dm"OF имеем:

Ctg φ/2 = ОF/m"O; m"O= p/2 (4.1.2.3)

Ctg φ/2 = (fоб*2)/p, (4.1.2.4)

где p - расстояние между дальномерными нитями. Далее пишем:

С = f об /p. (4.1.2.5)

Коэффициент дальномера равен отношению фокусного расстояния объектива к расстоянию между дальномерными нитями. Обычно коэффицент С принимают равным 100, тогда Ctg φ/2 = 200 и φ = 34.38". При С = 100 и fоб = 200 мм расстояние между нитями равно 2 мм.

4.1.3 Измерение нитяным дальномером наклонного расстояния

Пусть визирная линия трубы JK при измерении расстояния АВ имеет угол наклона ν, и по рейке измерен отрезок l (рис. 8). Если бы рейка была установлена перпендикулярно визирной линии трубы, то наклонное расстояние было бы равно:

D = l 0 * C + c (4.1.3.1)

l 0 = l*Cos ν (4.1.3.2)

D = C*l*Cosν + c. (4.1.3.3)

Горизонтальное проложение линии S определим из Δ JKE:

S = D*Cosν (4.1.3.4)

S= C*l*Cos2ν + c*Cosν. (4.1.3.5)

рис. 8 - Измерение нитяным дальномером наклонного расстояния

Для удобства вычислений принимаем второе слагаемое равным с*Cos2ν ; поскольку с величина небольшая (около 30 см), то такая замена не внесет заметной ошибки в вычисления. Tогда

S = (C * l + c) * Cos 2 ν (4.1.3.6)

S = D"* Cos2ν (4.1.3.7)

Oбычно величину (C*l + c) назыывают дальномерным расстоянием. Обозначим разность (D" - S) через ΔD и назовем ее поправкой за приведение к горизонту, тогда

S = D" – ΔD (4.1.3.8)

ΔD = D" * Sin 2 ν (4.1.3.9)

Угол ν измеряют вертикальным кругом теодолита; причем при поправка ΔD не учитывается. Точность измерения расстояний нитяным дальномером обычно оценивается относительной ошибкой от 1/100 до 1/300.

Кроме обычного нитяного дальномера существуют оптические дальномеры двойного изображения.

4.2 Особенности конструкции и принцип работы

В импульсном светодальномере источником излучения чаще всего является лазер, излучение которого формируется в виде коротких импульсов. Для измерения медленно меняющихся расстоянии используют одиночные импульсы, при быстро изменяющихся расстояниях применяется импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50-100 Гц, полупроводниковые - до 104-105 Гц. Формирование коротких импульсов излучения в твердотельных лазерах осуществляется механическими, электрооптическими или акустооптичекими затворами или их комбинациями. Инжекционные лазеры управляются током инжекции.

В фазовых светодальномерах в качестве источников света применяются накальные или газосветные лампы, светодиоды и почти все виды лазеров. Оптический дальномер со светодиодами обеспечивают дальность действия до 2-5 км, с газовыми лазерами при работе с оптическими отражателями на объекте - до 100 км, а при диффузном отражении от объектов - до 0,8 км; аналогично, Оптический дальномер с полупроводниковыми лазерами обеспечивает дальность действия 15 и 0,3 км. В фазовых Светодальномерное излучение модулируется интерференционными, акустооптическим и злектрооптическими модуляторами. В СВЧ фазовых оптических дальномерах применяются электрооптические модуляторы на резонаторных и волноводных СВЧ структурах.

В импульсных светодальномерах обычно в качестве фотоприёмного устройства применяются фотодиоды, в фазовых светодальномерах фотоприём осуществляется на фотоэлектронные умножители. Чувствительность фотоприёмного тракта оптического дальномера может быть увеличена на несколько порядков применением оптического гетеродинирования. Дальность действия такого Оптического дальномера ограничивается длиной когерентности) передающего лазера, при этом возможна регистрация перемещений и колебаний объектов до 0,2 км.

Измерение временных интервалов чаще всего осуществляется счётно-импульсным методом.

5. Вывод

Дальномер – является лучшим прибором для измерения расстояния на длинные дистанции. Сейчас лазерные дальномеры используются и в наземной военной технике и в авиации и на флоте. Ряд дальномеров принят на вооружение во многих армиях мира. Так же дальномер стал незаменимой частью охоты, что делает его уникальным и очень полезным.

6. Библиографический список

1. Герасимов Ф.Я., Говорухин А.М. Краткий топографо-геодезический словарь-справочник,1968;М Недра

Элементарный курс оптики и дальномеров, Воениздат, 1938, 136 с.

Военные оптико-механические приборы, Оборонпром, 1940, 263 с.

4. Интернет магазин оптики. Принципы работы лазерного дальномера. URL: http://www.optics4you.ru/article5.html

Электронная версия учебного пособия в форме гипертекста
по дисциплине "Геодезия". URL: http://cheapset.od.ua/4_3_2.htmlдальномераРеферат >> Геология

K и f + d = c , получаем D = K n + c , где K - коэффициент дальномера и c - постоянная дальномера . Рис. 8.4. Нитяный дальномер : а) – сетка нитей; б) – схема определения... нивелиров. Устройство технических нивелиров. В зависимости от устройств , применяемых...

В руках передового наблюдателя итальянской армии прибор разведки и целеуказания Elbit PLDRII, состоящий на вооружении многих заказчиков, включая корпус морской пехоты, где он имеет обозначение AN/PEQ-17

В поисках цели

Для того чтобы выработать координаты цели, система сбора данных должна в первую очередь знать свою собственную позицию. От нее она может определить дальность до цели и угол последней относительно истинного полюса. Система наблюдения (предпочтительно дневная и ночная), система точного определения местоположения, лазерный дальномер, цифровой магнитный компас являются типичными компонентами подобного устройства. Также неплохо в подобной системе иметь следящее устройство, способное идентифицировать кодированный лазерный луч для подтверждения цели пилоту, что, как следствие, повышает безопасность и уменьшает коммуникационный обмен. Указчики с другой стороны не достаточно мощны для наведения вооружения, но позволяют отметить цель для наземных или авиационных (бортовых) целеуказателей, которые, в конечном счете, наводят полуактивную лазерную головку самонаведения боеприпаса на цель. Наконец, радары обнаружения артиллерийских позиций позволяют точно определить позиции вражеской артиллерии, даже если (а так чаще всего и бывает) они находятся не в прямой видимости. Как было сказано , в этом обзоре будут рассмотрены только ручные системы.

Для того чтобы понять, что военные хотят иметь в своих руках, давайте рассмотрим требования, опубликованные американской армией в 2014 году, к своему лазерному прибору разведки и целеуказания LTLM (Laser Target Location Module) II, который должен через какое-то время заменить состоящий на вооружении предыдущий вариант LTLM. Армия ожидает прибор массой 1,8 кг (в конечном счете 1,6 кг), хотя вся система, включая сам прибор, кабели, треногу и комплект для чистки объективов, может поднять планку до 4,8 кг в лучшем случае до 3,85 кг. Если сравнивать, то нынешний модуль LTLM имеет базовую массу 2,5 кг и общую массу 5,4 кг. Пороговое значение ошибки местоположения цели определено в 45 метров на 5 километрах (также как у LTLM), практическое круговое вероятное отклонение (КВО) 10 метров на 10 км. Для дневных операций LTLM II будет иметь оптику с минимальным увеличением x7, минимальным полем зрения 6°x3.5°, окулярную шкалу с приращением 10 мил, а также дневную цветную телекамеру. Она обеспечит потоковое видео и широкое поле зрения 6°x4.5°, гарантируя вероятность распознавания 70% на 3,1 км и идентификацию на 1,9 км в ясную погоду. Узкое поле зрения должно быть не более 3°x2.25°, а лучше 2.5°x1.87°, с соответствующими дальностями распознавания 4,2 или 5 км и дальностями идентификации 2,6 или 3,2 км. Тепловизионный канал будет иметь такие же целевые поля зрения с вероятностью 70%-распознавания на 0,9 и 2 км и идентификации на 0,45 и 1 км. Данные о цели будут сохраняться в координатном блоке UTM/UPS, а данные и изображения передаваться через разъемы RS-232 или USB 2.0. Питание будет осуществляться от литиевых аккумуляторов L91 AA. Минимальная возможность установления связи должна обеспечиваться лёгким высокоточным GPS-приемником PLGR (Precision Lightweight GPS Receiver) и продвинутым военным GPS-приемником DAGR (Defense Advanced GPS Receiver), а также разрабатываемыми системами GPS. Впрочем, армия предпочла бы систему, которая также могла бы взаимодействовать с карманным устройством ввода информации Pocket Sized Forward Entry Device, программным обеспечением передового наблюдателя Forward Observer Software/System, системой управления боем Force XXI Battle Command, Brigade-and-Below и системой сетевого солдата Net Warrior.

Компания BAE Systems предлагает два прибора разведки и целеуказания. UTB X-LRF представляет собой развитие устройства UTB X, к которому был добавлен лазерный дальномер Class 1 с дальностью действия 5,2 км. Прибор базируется на неохлаждаемой тепловизионной матрице размером 640x480 пикселей с шагом 17 микрон, он может иметь оптику с фокусным расстоянием 40, 75 и 120 мм с соответствующей кратностью увеличения x2.1, x3.7 и x6.6, диагональными полями зрения 19°, 10.5° и 6.5° и электронным увеличением x2. По данным компании BAE Systems дальности положительного (вероятность 80%) обнаружения цели стандарта НАТО площадью 0,75 м2 составляют соответственно 1010, 2220 и 2660 метров. Прибор UTB X-LRF оснащен системой GPS точностью 2,5 метра и цифровым магнитным компасом. В него входят также лазерный указатель Class 3B в видимом и инфракрасном спектрах. В приборе может храниться до ста изображений в несжатом формате BMP. Питание осуществляется от четырех литиевых аккумуляторов L91, обеспечивающих пять часов работы, хотя прибор можно подключить к внешнему источнику питания через порт USB. UTB X-LRF имеет длину 206 мм, ширину 140 мм и высоту 74 мм, весит 1,38 кг без аккумуляторов.


В американской армии прибор Trigr от компании BAE Systems известен как Laser Target Locator Module, он включает неохлаждаемую тепловизионную матрицу и весит менее 2,5 кг


Прибор UTB X-LRF представляет собой дальнейшее развитие UTB X, в него добавлен лазерный дальномер, позволивший превратить устройство в полноценную систему разведки, наблюдения и целеуказания

Еще одно изделие компании BAE Systems – это лазерный прибор разведки и целеуказания Trigr (Target Reconnaissance Infrared GeoLocating Rangefinder – разведка цели инфракрасный геолокация дальномер), разработанный в сотрудничестве с Vectronix. Компания BAE Systems предоставляет для прибора неохлаждаемый тепловизор и помехозащищённый приемник GPS государственного стандарта с избирательной доступностью, тогда как Vectronix обеспечивает оптику с увеличением x7, оптоволоконный лазерный дальномер с дальностью 5 км и цифровой магнитный компас. По данным компании, прибор Trigr гарантирует КВО 45 метров на дистанции 5 км. Дальность распознавания днем составляет 4,2 км или более 900 метров ночью. Весит прибор менее 2,5 кг, два комплекта гарантируют круглосуточную работу. Вся система с треногой, аккумуляторами и кабелями весит 5,5 кг. В американской армии прибор получил обозначение Laser Target Locator Module; в 2009 году с ней был подписан пятилетний контракт на неопределенное количество, плюс еще два в августе 2012 года и январе 2013 года стоимостью 23,5 и 7 миллиона долларов соответственно.

Ручной лазерный прибор разведки, наблюдения и целеуказания Mark VII компании Northrop Grumman был заменен усовершенствованным прибором Mark VIIE. Эта модель получила тепловизионный канал вместо канала усиления яркости изображения предыдущей модели. Неохлаждаемый сенсор значительно улучшает обзорность в ночных условиях и в сложных условиях; он отличается полем зрения 11.1°x8.3°. Дневной же канал базируется на оптике переднего обзора с увеличением x8.2 и полем зрения 7°x5°. Цифровой магнитный компас обеспечивает точность ±8 мил, электронный клинометр имеет точность ±4 мил, местоположение обеспечивается встроенным помехозащищённым модулем с избирательной доступностью GPS/SAASM. Лазерный дальномер Nd-Yag (лазер на иттрий-алюминиевом гранате с неодимом) с оптической параметрической генерацией обеспечивает максимальную дальность 20 км с точностью ±3 метра. Прибор Mark VIIE весит 2,5 кг с девятью коммерческими элементами CR123, также он оснащен интерфейсом передачи данных RS-232/422.

Новейшим продуктом в портфолио компании Northrop Grumman является устройство HHPTD (Hand Held Precision Targeting Device – ручное высокоточное устройство целеуказания), которое весит менее 2,26 кг. По сравнению со своими предшественниками оно имеет дневной цветной канал, а также немагнитный астронавигационный модуль, который значительно повышает точность до уровня, необходимого современным управляемым по сигналам GPS боеприпасам. Контракт на разработку устройства стоимостью 9,2 миллиона долларов был выдан в январе 2013 года, работы велись в сотрудничестве с компаниями Flir, General Dynamics и Wilcox. В октябре 2014 года были проведены испытания устройства на ракетном полигоне Уайт-Сэндс.


Ручное высокоточное устройство Hand Held Precision Targeting Device представляет собой одну из новейших разработок компании Northrop Grumman; его комплексные испытания были проведены в конце 2014 года


У приборов семейства Flir Recon B2 основной канал – охлаждаемый тепловизионный. Прибор B2-FO с дополнительным дневным каналом в руках итальянского спецназовца (на фото)

Компания Flir имеет в своем портфолио несколько ручных приборов целеуказания и сотрудничает с другими компаниями, предоставляя устройства ночного видения для подобных систем. Прибор Recon B2 отличается основным тепловизионным каналом, работающим в средневолновом ИК-диапазоне. Устройство с охлаждаемой матрицей 640x480 на антимониде индия обеспечивает широкое поле зрения 10°x8°, узкое поле зрения 2.5°x1.8° и непрерывное электронное увеличение x4. Тепловизионный канал оборудован автофокусом, автоматической регулировкой усиления яркости и цифровым улучшением качества данных. Вспомогательный канал может быть оснащен либо дневным сенсором (модель B2-FO), либо длинноволновым инфракрасным каналом (модель B2-DC). Первый базируется на цветной 1/4" цветной ПЗС-камере с матрицей 794x494 с непрерывным цифровым увеличением x4 и двумя такими же полями зрения как у предыдущей модели. Вспомогательный тепловизионный канал базируется на микроболометре 640x480 на оксиде ванадия и обеспечивает одно поле зрения 18° с цифровым увеличением x4. В приборе B2 имеется модуль GPS C/A code (Coarse Acquisition code - код грубого определения местоположения объектов) (впрочем, с целью повышения точности может быть встроен модуль GPS военного стандарта), цифровой магнитный компас и лазерный дальномер с дальностью 20 км, а также лазерный указатель Class 3B с длиной волны 852 нанометра. Прибор B2 может сохранить до 1000 изображений в формате jpeg, которые могут быть выгружены через разъемы USB или RS-232/422, также имеются разъемы NTSC/PAL и HDMI для записи видеосигнала. Масса прибора менее 4 кг, включая шесть литиевых аккумуляторов D, обеспечивающих четыре часа непрерывной работы или более пяти часов в энергосберегающем режиме. Recon B2 может оборудоваться комплектом дистанционного управления, в состав которого входят тренога, панорамное поворотное устройство, блок энергоснабжения и связи и блок управления.


Компания Flir предлагает более легкий вариант прибора наблюдения и целеуказания Recon V, в состав которого входят тепловой сенсор, дальномер и другие типовые сенсоры, упакованные в корпус массой 1,8 кг

Более легкая модель Recon B9-FO отличается неохлаждаемым тепловизионным каналом с полем зрения 9.3°x7° и цифровым увеличением x4. Цветная камера имеет непрерывное увеличение x10 и цифровое x4, тогда как характеристики приемника GPS, цифрового компаса и лазерного указателя такие же как у модели B2. Основное отличие заключается в дальномере, имеющем максимальную дальность действия 3 км. Прибор B9-FO предназначен для работы на меньшей дальности; также он весит существенно меньше модели B2, менее 2,5 кг с двумя аккумуляторами D, которые обеспечивают пять часов непрерывной работы.

Благодаря отсутствию дневного канала еще меньше весит прибор Recon V, всего 1,8 кг с аккумуляторами, которые обеспечивают шесть часов работы при возможности «горячей» замены. Его охлаждаемая матрица на антимониде индия размером 640x480 пикселей работает в средневолновой ИК-области спектра, она имеет оптику с увеличением x10 (широкое поле зрения 20°x15°). Дальномер прибор рассчитан на дальность 10 км, тогда как гироскоп на базе микроэлектромеханических систем обеспечивает стабилизацию изображения.

Французская компания Sagem предлагает три бинокулярных решения для дневной/ночной засечки целей. Все они имеют в своем составе одинаковый цветной дневной канал с полем зрения 3°x2.25°, безопасный для глаз лазерный дальномер на 10 км, цифровой магнитный компас с азимутом 360° и углами места ±40° и модуль GPS C/S с точностью до трех метров (прибор может подключаться к внешнему модулю GPS). Основное отличие приборов заключается в тепловизионном канале.

Первым в списке стоит многофункциональный бинокль Jim UC, который имеет неохлаждаемую матрицу 640x480 с идентичными ночными и дневными полями зрения, тогда как широкое поле зрения составляет 8.6°x6.45°. Jim UC оснащен цифровым увеличением, стабилизацией изображения, встроенной функцией записи фото и видео; опциональной функцией слияния изображений между дневным и тепловизионным каналами. В его состав также входит безопасный для глаз лазерный указатель с длиной волны 0,8 мкм плюс аналоговые и цифровые порты. Без батарей бинокль весит 2,3 кг. Перезаряжаемая батарея обеспечивает более пяти часов непрерывной работы.


Многофункциональный бинокль Jim Long Range французской компании Sagem был поставлен французской пехоте как часть боевой экипировки Felin; на фото бинокль установлен на устройство целеуказания Sterna от Vectronix

Далее идет более продвинутый многофункциональный бинокль Jim LR, от которого, кстати, «отпочковался» прибор UC. Он состоит на вооружении французской армии, являясь частью боевой экипировки французского солдата Felin. Jim LR отличается тепловизионным каналом с сенсором 320x240 пикселей, работающим в диапазоне 3-5 мкм; узкое поле зрения такое же, как у модели UC, а широкое поле зрения составляет 9°x6.75°. Более мощный лазерный указатель, увеличивающий дальность действия с 300 до 2500 метров, предлагается опционально. Система охлаждения естественно увеличивает массу устройств Jim LR до 2,8 кг без аккумуляторов. Однако, охлаждаемый тепловизионный модуль значительно повышает характеристики, дальности обнаружения, распознавания и идентификации человека составляют соответственно 3/1/0,5 км для модели UC и 7/2,5/1,2 км для модели LR.

Замыкает модельный ряд многофункциональный бинокль Jim HR с еще более высокими характеристиками, которые обеспечивает матрица VGA 640x480 высокого разрешения.

Подразделение компании Sagem фирма Vectronix предлагает две платформы наблюдения, которые при подсоединении к системам от Vectronix и/или Sagem образуют чрезвычайно точные модульные инструменты для целеуказания.

Цифровой магнитный компас, входящий в состав цифровой станции наблюдения GonioLight, обеспечивает точность 5 мил (0,28°). При подсоединении гироскопа с ориентацией на истинный (географический) полюс точность повышается до 1 мила (0,06°). Гироскоп массой 4,4 кг устанавливается между самой станцией и треногой, в итоге общий вес GonioLight, гироскопа и треноги стремится к 7 кг. Без гироскопа подобная точность может быть достигнута за счет с применения встроенных процедур топографической привязки по известным наземным ориентирам или небесным телам. В систему встроены модуль GPS и канал доступа к внешнему модулю GPS. Станция GonioLight оборудована подсвечиваемым экраном и имеет интерфейсы для компьютеров, средств связи и других внешних устройств. На случай неисправности в системе имеются вспомогательные шкалы для определения направления и вертикального угла. Система позволяет принять различные дневные или ночные устройства наблюдения и дальномеры, например семейства дальномеров Vector или биноклей Sagem Jim, описанные выше. Специальные крепления в верхней части станции GonioLight позволяют также устанавливать две оптико-электронных подсистемы. Общая масса варьируется от 9,8 кг в конфигурации GLV, включающей GonioLight плюс дальномер Vector, до 18,1 кг в конфигурации GL G-TI, куда входят GonioLight, Vector, Jim-LR и гироскоп. Станция наблюдения GonioLight была разработана в начале 2000-х годов и с тех пор во многие страны было поставлено более 2000 этих систем. Эта станция также применялась в боевых действиях в Ираке и Афганистане.

Опыт компании Vectronix помог ей разработать сверхлегкую немагнитную систему целеуказания Sterna. Если GonioLite предназначена для дальностей свыше 10 км, то Sterna для дальностей 4-6 км. Вместе с треногой система весит около 2,5 кг, точность составляет менее 1 мила (0,06°) на любой широте при использовании известных ориентиров. Это позволяет получить ошибку местоположения цели менее четырех метров на дальности 1,5 км. На случай недоступности ориентиров система Sterna оборудуется полусферическим резонансным гироскопом совместной разработки Sagem и Vectronix, который обеспечивает точность 2 мила (0,11°) при определении истинного севера до широты 60°. Время установки и ориентирования составляет менее 150 секунд, при этом необходимо грубое выравнивание ±5°. Устройство Sterna питается от четырех элементов CR123A, обеспечивающих 50 операций ориентирования и 500 измерений. Как и GonlioLight, система Sterna может принять различные типы оптико-электронных систем. Например, в портфолио компании Vectronix имеется самый легкий прибор массой менее 3 кг PLRF25C и чуть более тяжелый (менее 4 кг) Moskito. Для выполнения более сложных задач могут быть добавлены устройства Vector или Jim, но масса при этом увеличивается до 6 кг. Система Sterna имеет специальное место крепления для установки на цапфу транспортного средства, с которой она может быть быстро снята для проведения спешенных операций. Для оценки эти системы в большом количестве были поставлены в войска. Американская армия заказала ручные системы Vectronix и системы Sterna в рамках Требования по ручным высокоточным устройствам целеуказания, выпущенного в июле 2012 года. В компании Vectronix с уверенностью говорят о постоянном росте продаж системы Sterna в 2015 году.

В июне 2014 года компания Vectronix показала прибор наблюдения и целеуказания Moskito TI с тремя каналами: дневным оптическим с увеличением x6, оптическим (технология КМОП) с усилением яркости (оба с полем зрения 6.25°) и неохлаждаемым тепловизионным с полем зрения 12°. В состав устройства входят также дальномер на 10 км с точностью ±2 метра и цифровой компас с точностью по азимуту ±10 мил (±0,6°) и по углу места ±3 мил (±0,2°). Модуль GPS идет опционально, хотя имеется разъем для внешних гражданских и военных приемников GPS, а также модулей Galileo или ГЛОНАСС. Имеется возможность подключения лазерного указателя. Устройство Moskito TI имеет интерфейсы RS-232, USB 2.0 и Ethernet, беспроводная связь Bluetooth идет опционально. Он питается от трех батареек или аккумуляторов CR123A, обеспечивающих свыше шести часов бесперебойной работы. И, наконец, все вышеупомянутые системы упакованы в устройство размерами 130x170x80 мм массой менее 1,3 кг. Это новое изделие является дальнейшим развитием модели Moskito, которая при массе 1,2 кг имеет дневной канал и канал с усилением яркости, лазерный дальномер дальностью 10 км, цифровой компас; опционально возможна интеграция GPS гражданского стандарта или подсоединение к внешнему приемнику GPS.

Компания Thales предлагает полный набор систем разведки, наблюдения и целеуказания. Система Sophie UF массой 3,4 кг имеет оптический дневной канал с увеличением x6 и полем зрения 7°. Дальность действия лазерного дальномера достигает 20 км, в Sophie UF может устанавливаться приемник GPS P(Y) code (шифрованный код точного местоположения объекта) или C/A code (код грубого определения местоположения объектов), который может подсоединяться к внешней приемнику DAGR/PLGR. Магниторезистивный цифровой компас с точностью 0,5° по азимуту и инклинометр с гравитационным датчиком с точностью 0,1° завершают сенсорный комплект. Устройство питается от элементов AA, обеспечивающих 8 часов работы. Система может работать в режимах коррекции падения снарядов и сообщения данных о цели; для экспорта данных и изображений она оснащена разъемами RS232/422. Система Sophie UF состоит также на вооружении британской армии под обозначением SSARF (Surveillance System and Range Finder – система обзора и дальномер).

Двигаясь от простого к сложному, остановимся на приборе Sophie MF. В его состав входят охлаждаемый тепловизор 8-12 мкм с широким 8°x6° и узким 3.2°x2.4° полями зрения и цифровым увеличением x2. Как опция идет цветной дневной канал с полем зрения 3.7°x2.8° наряду с лазерным указателем с длиной волны 839 нм. Также в систему Sophie MF входят лазерный дальномер на 10 км, встроенный приемник GPS, разъем для подсоединения к внешнему приемнику GPS и магнитный компас с точностью по азимуту 0,5° и углу места 0,2°. Sophie MF весит 3,5 кг и работает от комплекта аккумуляторов более четырех часов.

Прибор Sophie XF почти идентичен модели MF, основное отличие заключается в тепловизионном сенсоре, который работает в средневолновой (3-5 мкм) ИК-области спектра и имеет широкое 15°x11.2° и узкое 2.5°x1.9° поля зрения, оптическое увеличение x6 и электронное увеличение x2. Для вывода видеоданных доступны аналоговые и HDMI выходы, ведь Sophie XF способен хранить до 1000 фотографий или до 2 Гб видео. Также имеются порты RS 422 и USB. Модель XF имеет такие же размеры и вес, как и модель MF, хотя время работы от комплекта аккумуляторов составляет чуть больше шести или семи часов.

Британская компания Instro Precision, специализирующаяся на гониометрах и панорамных головках, разработала модульную систему разведки и целеуказания MG-TAS (Modular Gyro Target Acquisition System), базирующуюся на гироскопе, который позволяет выполнять высокоточное определение истинного полюса. Точность составляет менее 1 мил (не зависит от магнитных помех), а цифровой гониометр предлагает точность 9 мил в зависимости от магнитного поля. Система также включает легкую треногу и упрочненный карманный компьютер с полным набором инструментов целеуказания для обсчета данных цели. Интерфейс позволяет устанавливать один или два сенсора целеуказания.


Компания Vectronix разработала легкую немагнитную систему разведки и целеуказания Sterna, имеющую дальности действия от 4 до 6 километров (на фото установлена на Sagem Jim-LR)


Последним добавлением к семейству устройств целеуказания является модель Vectronix Moskito 77, которая имеет два дневных и один тепловизионный канал


Прибор Sophie XF компании Thales позволяет определять координаты цели, а для ночного обзора имеется сенсор, работающий в средневолновой ИК-области спектра


Система Nestor компании Airbus DS с охлаждаемой тепловизионной матрицей и массой 4,5 кг разработана для немецких горнострелковых войск. Она состоит на вооружении нескольких армий

Компания Airbus DS Optronics предлагает два прибора разведки, наблюдения и целеуказания Nestor и TLS-40, оба производятся в Южной Африке. Прибор Nestor, производство которого начато в 2004-2005 годы, изначально был разработан для немецких горнострелковых подразделений. Биокулярная система массой 4,5 кг включает дневной канал с увеличением x7 и полем зрения 6.5° с приращением визирных нитей 5 мил, а также тепловизионный канал на базе охлаждаемой матрицы размером 640x512 пикселей с двумя полями зрения, узким 2.8°x2.3° и широким (11.4°x9.1°). Расстояние до цели измеряет лазерный дальномер Class 1M с дальностью 20 км и точностью ±5 метров и регулировкой стробирования (частоты повторения импульса) по дальности. Направление и угол возвышения цели обеспечивает цифровой магнитный компас с точностью по азимуту ±1° и по углу места ±0.5°, при этом измеримый угол места составляет +45°. В прибор Nestor встроен 12-канальный приемник GPS L1 C/A(грубое определение), также можно подключать внешние модули GPS. Имеется видеовыход CCIR-PAL. Питается прибор от литий-ионных аккумуляторов, но имеется возможность подключения к внешнему источнику питания постоянного тока на 10-32 Вольта. Охлаждаемый тепловизор увеличивает массу системы, но при этом повышаются возможности ночного видения. Система состоит на вооружении нескольких европейских армий, включая Бундесвер, нескольких европейских пограничных сил и неназываемых покупателей с Ближнего и Дальнего Востока. Компания ожидает несколько крупных контрактов на сотни систем в 2015 году, однако новых заказчиков там не называют.

Используя опыт, полученный при создании системы Nestor, компания Airbus DS Optronics разработала более легкую систему Opus-H с неохлаждаемым тепловизионным каналом. Поставки ее начались в 2007 году. Она имеет такой же дневной канал, в то время как микроболметрическая матрица размером 640x480 обеспечивает поле зрения 8.1°x6.1° и возможность сохранения изображений в формате jpg. Другие компоненты были оставлены без изменений, включая моноимпульсный лазерный дальномер, который не только увеличивает дальность измерений без необходимости стабилизации на треноге, но также определяет и показывает до трех целей на любой дальности. Также от предыдущей модели оставлены последовательные разъемы USB 2.0, RS232 и RS422. Восемь элементов AA обеспечивают энергоснабжение. Прибор Opus-H весит примерно на один кг меньше прибора Nestor, по размерам он также меньше, 300x215x110 мм по сравнению с 360x250x155 мм. Покупатели системы Opus-H из военных и военизированных структур не разглашаются.




Система Opus-H компании Airbus DS Optronics

В связи с растущей потребностью в легких и дешевых системах целеуказания компания Airbus DS Optronics (Pty) разработала серию приборов TLS 40, которые весят менее 2 кг с аккумуляторами. Доступны три модели: TLS 40 только с дневным каналом, TLS 40i с усилением яркости изображения и TLS 40IR с неохлаждаемой тепловизионной матрицей. Их лазерный дальномер и GPS такие же как у прибора Nestor. Цифровой магнитный компас работает в диапазоне вертикальных углов ±45°, углов поперечного уклона ±30° и обеспечивает точность по азимуту ±10 мил и по углу места ±4 мил. Общий с предыдущими двумя моделями биокулярный дневной оптический канал с такими же визирными нитями как у прибора Nestor имеет увеличение x7 и поле зрения 7°. Вариант с увеличением яркости изображения TLS 40i имеет монокулярный канал на базе трубки Photonis XR5 с увеличением х7 и полем зрения 6°. Модели TLS 40 и TLS 40i имеют одинаковые физические характеристики, их размеры 187x173x91 мм. При одинаковой с двумя другими моделями массе прибор TLS 40IR больше по размерам, 215x173x91 мм. Она имеет монокулярный дневной канал с таким же увеличением и чуть боле узкое поле зрения 6°. Микроболометрическая матрица 640x312 обеспечивает поле зрения 10.4°x8.3° с цифровым увеличением x2. Изображение выводится на черно-белый oled-дисплей. Все модели TLS 40 могут опционально оснащаться дневной камерой с полем зрения 0.89°x0.75° для захвата изображений в формате jpg и диктофоном для записи речевых комментраиев в формате WAV по 10 секунд на изображение. Все три модели питаются от трех батареек CR123 или от внешнего источника питания на 6-15 Вольт, имеют последовательные разъемы USB 1.0, RS232, RS422 и RS485, видеовыходы PAL и NTSC, а также могут оснащаться внешним приемником GPS. Серия TLS 40 уже поступила на вооружение неназываемых заказчиков, включая африканских.


Nyxus Bird Gyro отличается от предыдущей модели Nyxus Bird гироскопом для ориентирования на истинный полюс, что значительно повышает точность определения координат цели на больших дистанциях

Немецкая компания Jenoptik разработала дневную-ночную систему разведки, наблюдения и целеуказания Nyxus Bird, которая выпускается в вариантах среднего и дальнего действия. Отличие состоит в тепловизионном канале, который у варианта средней дальности оснащен объективом с полем зрения 11°x8°. Дальности обнаружения, распознавания и идентификации стандартной цели НАТО составляют соответственно 5, 2 и 1 км. Вариант дальнего действия с оптикой с полем зрения 7°x5° обеспечивает большие дальности, соответственно 7, 2,8 и 1,4 км. Размер матрицы у обоих вариантов составляет 640x480 пикселей. Дневной канал у двух вариантов имеет поле зрения 6,75° и увеличение x7. Лазерный дальномер Class 1 имеет типичную дальность 3,5 км, цифровой магнитный компас обеспечивает точность по азимуту 0,5° в секторе 360° и по углу места 0,2° в секторе 65°. Nyxus Bird отличается несколькими режимами измерения и может хранить до 2000 инфракрасных изображений. Имея встроенный модуль GPS, тем не менее, он может подсоединяться к системе PLGR/DAGR для дополнительного повышения точности. Для передачи фото и видео имеется разъем USB 2.0, беспроводная связь Bluetooth идет опционально. С литиевым аккумулятором на 3 Вольта устройство весит 1,6 кг, без наглазника длина составляет 180 мм, ширина 150 мм и высота 70 мм. Nyxus Bird входит в состав программы модернизации немецкой армии IdZ-ES. Добавление тактического компьютера Micro Pointer с комплексной геоинформационной системой значительно повышает возможности локализации целей. Micro Pointer работает от встроенного и внешнего источников питания, имеет разъемы RS232, RS422, RS485 и USB и опциональный разъем Ethernet. Этот небольшой компьютер (191x85x81 мм) весит всего 0,8 кг. Еще одна дополнительная система – это гироскоп для немагнитной ориентации на истинный полюс, который обеспечивает очень точное направление и точные координаты цели на всех сверхдальних дистанциях. Гироскопическая головка с такими же разъемами как у Micro Pointer может подсоединяться к внешней системе GPS PLGR/DAGR. Четыре элемента CR123A обеспечивают 50 операций ориентирования и 500 измерений. Головка весит 2,9 кг, а вся система целиком с треногой 4,5 кг.

Финская компания Millog разработала ручную систему целеуказания Lisa, в состав которой входит неохлаждаемый тепловизор и оптический канал с дальностями обнаружения, распознавания и идентификации транспортного средства 4,8 км, 1,35 км и 1 км соответственно. Система весит 2,4 кг с аккумуляторами, которые обеспечивают время работы 10 часов. После получения контракта в мае 2014 год система начала поступать на вооружение финской армии.

Разработанный несколько лет назад для программы модернизации солдата итальянской армии Soldato Futuro Italian Army компанией Selex-ES, многофункциональный ручной дневной/ночной прибор разведки и целеуказания Linx был усовершенствован и в настоящее время имеет неохлаждаемую матрицу 640x480. Тепловизионный канал имеет поле зрения 10°x7.5° с оптическим увеличением x2.8 и электронным увеличением x2 и x4. Дневной канал – это цветная телекамера с двумя увеличениями (x3.65 и x11.75 с соответствующими полями зрения 8.6°x6.5° и 2.7°x2.2°). В цветной VGA дисплей встроено программируемое электронное визирное перекрестье. Измерение дальности возможно до 3 км, местоположение определяется с помощью встроенного приемника GPS, тогда как цифровой магнитный компас обеспечивает информацию по азимуту. Экспорт изображений осуществляется через разъем USB. Дальнейшая доработка прибора Linx ожидается в течение 2015 года, когда в него будут встроены миниатюрные охлаждаемые сенсоры и новые функции.

В Израиле военные стремятся повысить свои возможности огневого взаимодействия. С этой целью каждому батальону будет придана группа координации воздушных ударов и наземной огневой поддержки. В настоящее время батальону придается один офицер связи артиллерии. Национальная промышленность уже работает над обеспечением инструментальных средств для решения этой задачи.


Прибор Lisa финской компании Millog оснащен неохлаждаемым тепловизионным и дневным каналами; при массе всего 2,4 кг он имеет дальности обнаружения чуть менее 5 км


Прибор Coral-CR с охлаждаемым тепловизионным каналом входит в линейку систем целеуказания израильской компании Elbit

Компания Elbit Systems очень активно работает как в Израиле, так и в Соединенных Штатах. Ее прибор наблюдения и разведки Coral-CR имеет охлаждаемый средневолновой детектор 640x512 на антимониде индия, имеющий оптические поля зрения от 2.5°x2.0° до 12.5°x10° и цифровое увеличение x4. Черно-белая ПЗС-камера с полями зрения от 2.5°x1.9° до 10°x7.5° работает в видимой и ближней ИК-области спектра. Изображения выводятся на цветной oled-дисплей высокого разрешения через настраиваемую бинокулярную оптику. Безопасный для глаз лазерный дальномер Class 1, встроенный GPS и цифровой магнитный компас с точностью 0.7° по азимуту и углу места довершают сенсорный комплект. Координаты цели вычисляются в реальном времени и могут предаваться на внешние устройства, прибор может сохранять до 40 изображений. Имеются видеовыходы CCIR или RS170. Прибор Coral-CR имеет длину 281 мм, ширину 248 мм, высоту 95 мм и массу 3,4 кг, включая перезаряжаемый аккумулятор ELI-2800E. Прибор состоит на вооружении многих стран НАТО (в Америке под обозначением Emerald-Nav).

Неохлаждаемый тепловизор Mars легче и дешевле, он базируется на 384x288 детекторе на оксиде ванадия. Кроме тепловизионного канала с двумя полями зрения 6°x4.5° и 18°x13.5° в него встроена цветная дневная камера с полями зрения 3°x2.5° и 12°x10°, лазерный дальномер, приемник GPS и магнитный компас. Прибор Mars имеет длину 200 мм, ширину 180 мм и высоту 90 мм, с аккумулятором он весит всего 2 кг.

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

Стереотруба Scherenfernrohr — оптический прибор, состоящий из двух перископов, соединённых вместе у окуляров и разведённых в стороны у объективов, для наблюдения удалённых предметов двумя глазами. Немецкая армейская стреотруба в футляре (Scherenfernrohr mit Kasten), прозванная в войсках «кроличьими ушами», предназначалась для наблюдения за вражескими позициями, целеуказания и определения расстояний. Основное применение она находила на командных и наблюдательных пунктах артиллерии и пехоты. Оптика характеризовалась соотношением
10x50, т. е. 10-кратным увеличением при 50-мм линзах объективов. Перископическая оптическая система
располагалась в стальных трубах длиной около 37 см. Чтобы получить хороший стереоэффект, необходимый для точного определения расстояний, трубы раздвигали примерно на угол 90 градусов. В конструкцию входили регулировочные винты для настройки оптической системы и совмещения дальномерных меток, уровень, аккумуляторная батарея, лампочка, узел крепления к треноге. В комплект входили желтые светофильтры, запасная лампочка, крышки для объективов и окуляров и другие мелочи.


В походном положении трубы сводились до соприкосновения и вся конструкция помещалась в специальном, чаще кожаном, футляре размерами: 44,5 см — высота, 17,5 см — ширина и от 21,5 см до 11 см — глубина (более узкая в основании). Стереотруба могла комплектоваться треногой и некоторыми дополнительными приспособлениями.
Подвижные соединения конструкции немецкой стереотрубы смазывались холодостойкой смазкой, рассчитанной на температуру —20 °С. Окраска основных поверхностей производилась в оливково-зеленые тона, однако зимой трубы прямо на передовой могли перекрашивать в белый цвет (в 1942 году на перевалах Приэльбрусья немцы красили в белый цвет не только бинокли, дальномеры и лыжи, но даже осликов, используемых для транспортировки снаряжения).
Основным производителем этих инструментов (а, возможно, и единственным) была фирма «Карл Цейсс Йена». На корпусе проставлялся код изготовителя, серийный номер
(например, 378986), код армейского заказа (например, «Н/6400»), обозначение
смазки (например, «KF») и некоторые другие маркировки на отдельных узлах (например,
«S.F.14. Z.Gi.» — Scherenfernrohr 14 Zielen Gitter — маркировка телескопической
трубы).

Сетка стереотрубы Scherenfernrohr 14

НЕМЕЦКИЙ ДАЛЬНОМЕР

Стереотелескопический дальномер, имел базовое расстояние 1 метр. Интересной его особенностью был специальный штатив для плеч, позволявший проводить наблюдения и замеры прямое рук. Сам дальномер и все его комплектующие хранились в продолговатом металлическом ящике, а детали штатива — в небольшом алюминиевом футляре трапецеидальной
формы.

Дальномер мод.34 (модель 1934 года) стандартный армейский механический оптический дальномер.
Entfernungsmesser 34 - сам дальномер
Gestell mit Behaelter - тренога с чехлом
Stuetzplatte - опорная пластина
Traghuelle - транспортировочный чехол
Berichtigungslatte mit Behaelter выверочная рейка с чехлом (это которая "корректировочная пластина")
Служит для определения расстояния орудие-цель, а также любых других дистанций на местности или до воздушных целей.
Применяется в основном для определения дистанций для тяжелых минометов и тяжелых пулеметов, в том случае, если дистанция до цели составляет более 1000 метров, а также в комплексе с другими средствами артиллерийской наводки.

Конструкция, устройство и внешний вид почти идетичны его предшественнику- дальномеру обр. 1914 года (Entfernungsmesser 14).
Длина дальномера 70 см. Диапазон измерений- от 200 до 10000 метров. Имеет поле зрения 62 метра на дистанции 1000 метров.

Дальномер очень прост и удобен в использовании, притом, что имеет сравнительно небольшую погрешность определения дистанции, например:
на 4500 метрах погрешность теоритическая= +/- 131 метр, а практическая= +/- 395 метров.
(К примеру того же времени советский станковый, очень громоздкий и многосоставный стереоскопический дальномер имеет всего лишь в два раза меньшую погрешность.)
Чтобы узнать дистанцию до того или иного объекта нужно просто совместить видимую картинку в осноном окне с картинкой в маленьком.
На дальномере имеются также два валика для изменения шкалы дальности (имеют разную скорость изменения шкалы).

Для первоначальной, грубой "наводки" на объект на корпусе дальномера есть специальные мушка и прицел.
Кроме того, от загрязнения и механических повреждений объективы дальномера, в случае необходимости и в походном положении, защищаются металлическими цилиндрический пластинами. А окуляр защищается специальной крышкой на пружинной застежке.

В комплект к дальномеру входят:
-сам дальномер с плечевой лямкой
-чехол-переноская для дальномера
-треножная стойка для дальномера с чехлом на пояс и опорной плитой, для ношения на шее.
-корректировочная пластина с чехлом
Переносился весь комплект одним человеком, но как правило не всё из него всегда было на дальномерщике (по-немецки Messmann [мэссман]).




Полный комплект: с ЗИП, с треногой, чехлами, рулеткой и прочими аксессуарами к прибору. С клеймением "серп-молот" на поверхности. Дата последнего ремонта в инструкции 1960 год! Это стандартный зенитный дальномер военного образца в отличном состоянии (складская консервация). Оптика чистая, изделие без механических повреждений. Для работы дальномер устанавливается на штатив, который состоит из держателя и треноги (все в комплекте). В деревянном ящике для транспортировки и переноски. Размер ящика 117х27х17 см.

Данный оптический прибор может украсить интерьер кабинета или офиса, придав современному интерьеру ретро антураж, а также послужить и практически - для наблюдением за потенциальным противником (соседями по даче например)...

РУКОВОДСТВО
для
БОЙЦА ПЕХОТЫ

Глава 12
СЛУЖБА СТАНКОВОГО ПУЛЕМЕТА

П улеметчику поручается испытанное оружие - пулемет Максима.
Метким и беспощадным пулеметным огнем разили неустрашимые бойцы Красной Армии белогвардейские банды в боях во время гражданской войны в СССР. Красная Армия оснащена многими образцами пулеметов, но из них самым мощным остается пулемет Максима. Это испытали на себе белополяки, самураи и белофинны.
Пулемет бьет свинцовой струей, выбрасывая в минуту 600 пуль. Эта страшная струя уничтожает атакующих вражеских пехотинцев и кавалеристов и останавливает их продвижение.
Огонь пулемета только подготавливает успех, завершает его штыковой удар.
Ни на минуту не забывай о том, что пулемет обеспечивает пехоту огнем, помогает ей выполнить поставленную задачу.

1. ИЗГОТОВКА ПУЛЕМЕТКА
ПУЛЕМЕТНЫЙ РАСЧЕТ

С танковый пулемет обслуживают начальник пулемета и шесть бойцов: наблюдатель - дальномерщик, наводчик, помощник наводчика, два подносчика патронов, ездовой.
Каждый пулеметчик должен уметь выполнять обязанности любого бойца пулеметного расчета в случае, если придется заменить его в бою.
Начальника пулемета заменяет наводчик.
При каждом станковом пулемете возится боевой комплект патронов, 12 коробок с пулеметными лентами, два запасных ствола, одна коробка с запасными частями, одна коробка с принадлежностями, три бидона для воды и смазки, оптический пулеметный прицел. Если пулемет назначается для ведения стрельбы по воздушным целям, то при нем имеются зенитная тренога и зенитный прицел.

УСТАНОВКА ПУЛЕМЕТА НА ОГНЕВОЙ ПОЗИЦИИ

Для занятия огневой позиции подается команда (примерно): "Направление на зеленый куст! На катках! (тачкой, на руках). На позицию!"
Пулемет доставляется указанным в команде способом на позицию. Для установки пулемета выбери ровную площадку с прочным грунтом (лучше всего дерн). Если такой площадки нет, - подготовь ее с помощью шанцевого инструмента. При рыхлом или каменистом грунте под катки пулемета положи подкладки из материала, который найдется под рукой (войлок, шинель и т.д.). Пулемет устанавливай ровно.
Если одно колесо стоит выше, подкопай грунт, но не подсыпай его. После установки пулемета на позицию подготовь его для стрельбы.
Наводчик! Установи ствол станка горизонтально (на-глаз). Для этого правой рукой оттяни рукоятку стопоров на себя, а левой рукой за ручку затыльника передвинь тело пулемета по дугам станка, чтобы ствол стоял горизонтально. После этого закрепи пулемет: брось ручку стопоров и слегка подай тело пулемета вперед и назад. Затем установи тело пулемета горизонтально. Для этого подбери нужное отверстие тяг, действуя при помощи механизмов для грубой и тонкой наводок.
Установив пулемет, направь тело пулемета по направлению стрельбы.
Подними стойку прицела или, при стрельбе с оптическим прицелом, сними с панорамы колпачок.
Помощник наводчика! Сними колпачок надульника, открой пароотводное отверстие, привинти пароотводную кишку и отведи конец ее в землю или опусти в сосуд с водой. Поставь правее приемника патронную коробку, откинь крышку вправо, подготовь ленту для подачи и открой заслонку щита.
Наводчик ложится за пулеметом, слегка раскинув ноги в стороны, развернув ступни ног и прижав их к земле. Голову поднимает, как ему удобнее. Локти упирает в подлокотники (скатка, дерн, коробки и т.д.), которые не должны давить на хобот станка.
Помощник наводчика! Ложись справа от пулемета так, чтобы было удобно работать при пулемете.
Остальные бойцы пулеметного расчета располагаются в зависимости от местности и обстановки, так, чтобы возможно лучше выполнять свои обязанности (рис. 205).



Для зенитной стрельбы с универсального станка обр. 1931г. пулемет предварительно разряжают, все механизмы станка закрепляют, а оптический прицел с тягой и щит снимают. Зенитный прицел устанавливают на пулемет.
По команде " По самолету" :
Наводчик! Нажми левой рукой защелку средней ноги треноги, возьмись за кольцо сошника и выдерни доотказа одновременно все три ноги; поверни за пятку переднюю ногу треноги направо, а левую - налево; выводи их из сцепления со средней ногой и разводи в стороны, после чего встань сзади пулемета и возьмись обеими руками за ручку затыльника.
Помощник наводчика! Встань спереди пулемета, возьмись за кожух ближе к переднему обрезу короба и вместе с наводчиком подними пулемет вверх и наклони его на заднюю ногу станка; затем оттяни на себя запорный штырь соединительной вилки хода и отдели ход от стола станка, поворачивая его вперед и вниз.
Наводчик! Освободи зажимы грубой вертикальной наводки и выведи пулемет из сцепления с сектором правой стойки вертлюга.
Помощник наводчика! Нажми вниз защелку вертлюга и освободи головку вертлюга.
Для того чтобы получить возможность кругового обстрела, наводчик поворачивает пулемет по столу на полкруга (180")
Для стрельбы с зенитно-пулеметной треноги обр. 1928г. один из подносчиков патронов назначается прицельным.
По команде " По самолету" помощник наводчика отвинчивает гайку соединительного болта.
Наводчик! Вынь соединительный болт и передай его помощнику наводчика.
Помощник наводчика! Вынь засов тонкой наводки.
Наводчик! Возьми тело пулемета и поднеси его к треноге.
Помощник наводчика! Прими соединительный болт от наводчика и вставь его в проушины станка.
Первый подносчик патронов! Перенеси треногу на место, указанное командиром, и отстегни ремень, стягивающий ее ноги.
Прицельный! Отвинти стяжной болт хомута муфты центральной трубы треноги.
Подносчик патронов и прицельный! Растягивайте треногу.
Прицельный! Зажми стяжной болт хомута центральной трубы треноги.
Командир отделения свинчивает гайку соединительного болта на вертлюге треноги, вынимает болт и передает его первому подносчику патронов.
Наводчик! Теперь ставь пулемет на вертлюг, а прицельный прими пулемет у наводчика.
Первый подносчик патронов! Вставь соединительный болт.
Прицельный! Завинти гайку соединительного болта, вставь засов тонкой наводки в проушины пулемета, вынь разрезную чеку затыльника и снова введи ее через проушины нагрудника.
Пулеметному расчету остается установить на пулемет прицел.

УСТАНОВКА ЗЕНИТНОГО ПРИЦЕЛА
НА ПУЛЕМЕТЕ И СНЯТИЕ ЕГО

Прицел устанавливается на пулемете при переходе с наземного станка на зенитную треногу. По команде командира:
Наводчик! Вынь задний визир из футляра, свинти стопорные винты основания и приложи основание визира к правой стороне стойки наземного прицела так, чтобы отверстия в стойке прицела и основания заднего визира совпадали. Пропусти стопорные винты в отверстие основания визира и стойки наземного прицела и закрепи их.
Вынь из футляра прицельную линейку с регулирующим приспособлением и зажимной обоймой и надень обойму на короб пулемета, введя в отверстие поводка ось указателя прицела (эксцентрика).
Помощник наводчика! Установи указатель прицела на деление "0" и, когда наводчик наденет обойму на короб пулемета, ввинти соединительный винт прицельной линейки в отверстие верхней части хомута.
Вынь из футляра передний визир, вставь его в стойку и трубку визиродержателя и закрепи ее.
Прицельный! Вынь из футляра хомут и, отвинтив гайки затяжных винтов, разъедини верхнюю и нижнюю хомутины. Затем вместе с помощником наводчика надень хомут на кожух пулемета так, чтобы передняя часть верхней хомутины совпала с насеченной на кожухе чертой, и закрепи хомут (завинти гайки колпаков), наблюдая, чтобы хомут не был свален; завинти прижимной винт обоймы.
Установленные на пулемете хомут и задний визир не мешают стрельбе с наземным прицелом, поэтому они снимаются только при чистке пулемета. Это дает возможность сократить время установки зенитного прицела и его выверки.
Зенитный прицел нужно устанавливать на пулемете в течении 10 секунд.
Чтобы снять прицел, отвинти соединительный винт прицельной линейки и отдели конец ее от хомута;
поставь указатель эксцентрика на нулевое деление;
освободи прижимной винт обоймы и приподними обойму кверху, одновременно выводя из отверстия поводка ось указателя прицела;
отдели передний визир от каретки, освободив зажим и, вынув ножку держателя из гнезда каретки, аккуратно уложи прицел в коробку.

ЗАРЯЖАНИЕ ПУЛЕМЕТА

Для автоматической стрельбы пулемет заряжается так:
Помощник наводчика! Левой рукой просунь наконечник ленты в приемник.
Наводчик! Прими конец ленты левой рукой и, придерживая его большим пальцем сверху, продерни ленту влево и несколько вперед доотказа; правой рукой подай рукоятку вперед и удерживай ее в этом положении; вторично продерни ленту влево; брось рукоятку, прими руку в сторону и вперед; вторично подай рукоятку вперед, снова продерни ленту влево, брось рукоятку.
Для стрельбы одиночными выстрелами наводчик заряжает пулеметы для автоматической стрельбы, после чего подает рукоятку один раз вперед и бросает ее.

2. НАВОДКА ПУЛЕМЕТА В ЦЕЛЬ



Наводчик! При наводке пулемета в цель по открытому прицелу большим пальцем правой руки сдвинь тормозную планку и вращай маховичок прицела до совмещения верхнего обреза хомутика с нужным делением прицельной планки (рис. 206). В прицелах старого образца с нужным делением прицельной планки совмещают указатель в виде белой черточки в окне хомутика (рис. 206).
После этого сдвинь тормозную планку на место и установи целик, вращая левой рукой головку ходового винта до совмещения указателя целика с нужным делением шкалы на трубке.
Остается навести пулемет в цель. Для этого открепи правой рукой механизм тонкой вертикальной наводки, а левой - рассеивающий механизм. Правой рукой вращай маховичок механизма тонкой наводки и, слегка ударяя ладонью левой руки по ручкам затыльника, наведи пулемет в цель.
При правильной наводке вершина мушки должна быть по середине прорези целика и вровень с ее краями, касаясь снизу точки наводки.
Наводчик! При наводке отдали глаза на 12-15 сантиметров от прорези целика, зажмурь левый глаз или держи оба глаза открытыми.
Навел пулемет, - закрепи механизмы тонкой наводки правой, а рассеивающий - левой рукой.
При стрельбе в точку и с рассеиванием по фронту закрепляют механизм тонкой вертикальной наводки.
При стрельбе с рассеиванием в глубину закрепляют только рассеивающий механизм.

УСТАНОВКА ПРИЦЕЛЬНОГО КОЛЬЦА

Помощник наводчика! (После того как наводчик закрепил механизм тонкой наводки и указал деление кольца.) Установи прицельное кольцо (рис. 206). Для этого возьми большим и указательным пальцами правой руки за прицельное кольцо и вращай его до совмещения нужного деления с указанием в окне втулки.
Установка кольца всегда соответствует установке прицела (если не было подано особой команды).
Помощник наводчика! Если огонь ведется с одновременным рассеиванием по фронту и в глубину, охвати маховичок левой рукой снизу и доложи командиру отделения или подними руку до уровня головы. Пулемет готов к стрельбе.
Наводчик! Одновременно проверь установку прицельного кольца и наводку.

УСТАНОВКА ОПТИЧЕСКОГО ПРИЦЕЛА

Прежде чем установить оптический прицел, нужно убедиться, что все шкалы его - в нулевом положении, а 30-00 угломерной шкалы стоит напротив указателя, затем снять с пальца шатуна предохранительный колпачок и убрать его в коробку.
Наводчик! Для установки прицела подай ручку зажима шатуна кверху, освободи зажим пальца шатуна;
надень прицел трубчатой осью корпуса на палец шатуна так, чтобы штифт шатуна свободно вошел в окно установочного хомутика между регулирующими винтами, и довинти задний регулирующий винт доотказа, но без излишнего усилия;
закрепи прицел, для чего ручку зажима пальца шатуна поверни вниз доотказа;
специальным ключом закрепи контрагайку заднего регулирующего винта, сними кожаный колпачок с панорамы.
Затем, убедившись, что деление 30-00 угломерной шкалы панорамы стоит против указателя, установи угломер и маховичок барабана до совмещения нужного деления с указателем (рис. 207).



После этого убедись, что шкала барабана для установки углов места цели и шкала барабана для установки углов прицеливания стоят нулевыми делениями против своих указателей; установи угол прицеливания для пули обр. 1908 или 1930 г. и уровень, вращая барабан шкалы углов места цели: "больше" - по внутренней шкале, "меньше" - по внешней.
Теперь оттяни муфту с резиновым наглазником назад и наведи пулемет в нужную точку так, чтобы вершина треугольника прицельных нитей (оптическая мушка) совместилась с точкой наводки (рис. 208).
Помощник наводчика делает то же, что и при наводке с открытым прицелом.

3. СТРЕЛЬБА ИЗ ПУЛЕМЕТА

П ри автоматическом огне из станкового пулемета отдельные пули, которые летят по одному направлению, образуют пулеметный сноп выстрелов.
При стрельбе в точку с закрепленными механизмами размеры снопа по высоте, по ширине и по дальности наименьшие. При стрельбе из пулемета с открепленными механизмами размеры снопа выстрелов увеличиваются, особенно по дальности, или по высоте, если стрельба ведется по вертикальной цели.
Величина размера снопа выстрелов зависит от степени исправности механизмов станка и соединительных болтов.
Расстояние местности от места падения самой близкой пули до места падения самой дальней пули называется глубиной рассеивания пуль.
Если местность у цели повышается, глубина рассеивания пуль уменьшается, если понижается - увеличивается.
Выгодней всего "бить противника сердцевиной пуль".

СТРЕЛЬБА ОЧЕРЕДЯМИ

Наводчик! Для стрельбы очередями подними предохранитель, нажми доотказа вперед на спусковой рычаг и удерживай его, пока пулемет не выпустит очередь (10-30) патронов; затем быстро, если нужно, исправь наводку и снова выпусти очередь (10-30) патронов, так поступай до израсходования назначенного количества патронов.
Длина каждой очереди регулируется наводчиком на слух (без точного отсчета патронов).
В учебной обстановке назначенное количество патронов можно отделить в ленте заранее.
При стрельбе не нажимай на ручки затыльника ни вниз ни вверх. Не корректируй стрельбу (изменение дальности) нажимом на ручки. При мертвом ходе, который в пулемете всегда есть, стреляя поверх своих войск и поднимая ручки затыльника, можешь обстрелять свои же войска.
Помощник наводчика! Во время стрельбы поддерживай ленту левой рукой и направляй ее в приемник. Если стрельба непроизвольно прекратилась, подними руку и громко доложи: "Задержка!" При этом посмотри на положение рукоятки и укажи наводчику (примерно): "Рукоятка в вертикальном положении", "Рукоятка на своем месте" и т.д. Помогай наводчику устранять задержку.
Наводчик при стрельбе одиночными выстрелами после каждого выстрела подает рукоятку вперед и бросает ее.

ВИДЫ ПУЛЕМЕТНОГО ОГНЯ

Стрельба в точку с рассеиванием по фронту и в глубину выполняется автоматическим огнем. Этим же огнем ведется пристрелка. При стрельбе в точку сноп огня очень узок. Поэтому если будет неправильно определено расстояние и не точно учтены атмосферные условия, сноп может пройти мимо цели. Чтобы избежать этого, необходимо увеличивать сноп огня рассеиванием по фронту и в глубину.
При ведении огня в точку наводчик слегка открепляет рассеивающий механизм и следит, чтобы линия прицеливания не отклонялась от точки наводки.
При ведении закрепленного огня в точку наводчик после наводки пулемета закрепляет рассеивающий механизм и механизм тонкой вертикальной наводки.
При ведении огня с рассеиванием по фронту наводчик освобождает рассеивающий механизм, наводит пулемет в левый или правый край цели и, открыв огонь, плавно, без рывков, не нажимая на ручки затыльника, ведет пулемет вправо или влево в указанных пределах, следя за рассеиванием по линии прицеливания; механизм тонкой вертикальной наводки при этом закреплен.
Нормальная скорость рассеивания такова, чтобы на каждый метр фронта приходилось не менее двух пуль.
Если цель не видна или видна плохо, наводчик ограничивает рассеивание местными предметами, между которыми находится цель (например от куста до дороги).
Наводчик! При стрельбе с рассеиванием на указанный командиром угол сначала найди пределы рассеивания с помощью пулеметной линейки: отметь ногтем большого пальца деление угломерной шкалы на линейке, указанное командой; удали линейку на 50 сантиметров от глаза, направь нулевое деление шкалы в точку наводки и заметь на местности точку, которая приходится против отмеченного деления на линейке.
Пределы рассеивания определяются также: 1) оптическим прицелом: установи барабан панорамы (а если нужно - и поворотную головку ее) от основной установки его на указанный командиром угол в сторону обратную направлению рассеивания; заметь на местности предмет, затем снова установи барабан (поворотную головку) на основную установку; 2) целиком, передвигая его на указанное число делений и замечая на местности пределы рассеивания.
Наводчик! Ведя огонь с рассеиванием в глубину , по окончании наводки пулемета, не закрепляя механизма тонокой вертикальной наводки, возьмись правой рукой снизу за маховичок и после первого выстрела начинай вращать маховичок.
Помощник наводчика! Следи по прицельному кольцу за точностью рассеивания в указанных пределах.
Скорость рассеивания в глубину - одно деление прицельного кольца в одну секунду.
При ведении огня с одновременным рассеиванием по фронту, а помощник наводчика - по кольцу в глубину. При этом скорость двух рассеиваний может быть увеличена до двух делений кольца в секунду.
Из пулемета можно стрелять автоматическим огнем непрерывно или очередями, или же одиночными выстрелами. Стрельба одиночными выстрелами применяется только при обучении и для того, чтобы разогреть замерзшую жидкость и ствол пулемета.
Рассеивание в глубину производится по кольцу в нужных границах, например от 11 до 12. При этом сноп выстрелов будет перемещаться по глубине на 100 метров. Рассеивание в глубину на 100 метров полезно применять при обстреле неглубоких или малых целей. Большое рассеивание в глубину, например на 200 метров (по кольцу от 11 до 13 примерно), применяется как исключение, так как при этом глубина рассеивания пуль сильно увеличивается и действительность огня уменьшается.
Широкие и глубокие цели следует обстреливать, рассеивая огонь одновременно по фронту и в глубину.
Пристрелка ведется огнем в точку при закрепленных механизмах. Пристрелка по целям в бою будет исключением. Цели в бою будут очень быстро скрываться за укрытия. Поэтому их надо поражать, сразу открывая огонь на поражение, устанавливая прицел соответственно расстоянию до цели с учетом атмосферных влияний (ветер, температура, давление).
Когда ведется автоматический огонь и место попадания пуль хорошо видно, нужно вносить поправки, например: "перелет 50 метров - дать по кольцу полделения назад", "недолет 100 метров - дать по кольцу один вперед" и т.д.
Во всех случаях стремиться направлять огонь своего пулемета во фланг или косоприцельно. Такой огонь дает наибольшие результаты в бою.

НАБЛЮДЕНИЕ ЗА ОГНЕМ
КОРРЕКТИРОВАНИЕ ОГНЯ

Особенно важно непрерывно наблюдать за падением пуль, за тем как ведет себя живая цель - противник. При правильном наблюдении можно исправить ошибку в выборе прицела, учета влияния температуры и ветра, ошибку наводчика.
Самое важное - установить, где ложится сердцевина выстрелов. По отдельным случайным пулям исправить стрельбу нельзя.
На сырой земле, в траве, при сильном артиллерийском обстреле района цели падение пуль наблюдать невозможно. Тогда следует наблюдать как ведет себя противник. При метком огне можно заметить убитых и раненых, противник заляжет, прекратит движение и огонь, колонны будут развертываться и т.д.
Результаты наблюдения докладывай так:
1) сердцевина накрыла цель - доклад: "Хорошо";
2) пули легли ближе цели - доклад: "Недолет 100" (примерно в метрах);
3) пули легли дальше цели - доклад: "Перелет 50" (примерно в метрах);
4) пули легли справа или слева от цели - доклад: "Вправо (или влево) 15" (в делениях угломера).
При перелетах - уменьшить прицел, при недолетах - увеличить. При боковом отклонении пуль исправить установку целика (угломера).
Запомни! "Пуля идет за целиком" (угломером): целик влево - пули влево, целик вправо - пули вправо.

СТРЕЛЬБА ПО САМОЛЕТУ С ПОМОЩЬЮ
ЗЕНИТНОГО ПРИЦЕЛА ОБР. 1929 г.

Для стрельбы по воздушной цели надо точно определить расстояние и скорость движения цели и сответственно этим данным установить передний визир на шкале прицельной линейки, а прицельный механизм по дистанции стрельбы;
выбрать кольцо визира соответственно скорости движения цели и установить визир в горизонтальное или вертикальное положение, в зависимости от угла места цели.
Что должен делать наводчик, помощник наводчика и прицельный, открывая по команде огонь?
Прицельный! Находясь слева от пулемета, перемести каретку переднего визира по прицельной линейке на деление, соответствующее скомандованной дальности, и придай визиру, в зависимости от угла места цели, горизонтальное или вертикальное положение.
Постановка переднего визира в горизонтальное или вертикальное положение производится перестановкой отвеса; для этого оттяни отвес в сторону и поверни его на 90*.
Стрельба по самолету при горизонтальном положении переднего визира возможна только в том случае, если угол видимости цели (угол места цели) будет не менее 10*. В случаях, когда самолет движется под углом к цели менее 10*, делай наводку при вертикальном положении визира.
При этом поставь визир по курсу цели, т.е. параллельно направлению ее движения в отношении плоскости стрельбы.
Прицельный должен иметь достаточный навык для быстрого определения угла места цели на-глаз.
Помощник наводчика! Находясь справа у пулемета, установи указатель прицела соответственно дистанции стрельбы, направь ленту в приемник и во время стрельбы следи за правильной установкой прицела. Указатель прицела при стрельбе по цели, движущейся на дистанциях, не превышающих 1000 метров, устанавливай на деление 10. При стрельбе на дистанциях свыше 1000 метров перемести указатель прицела на деление, соответствующее указанной в команде дистанции.
Наводчик! Направь пулемет в цель, наводя его через диоптр заднего визира и соответствующую точку переднего визира, в зависимости от направления и скорости движения цели.
Если самолет пикирует на пулемет или уходит после пикирования, то, независимо от скорости его движения, прицеливайся через центр диоптра заднего визира и центр (отверстие втулки) переднего визира непосредственно в голову самолета (рис. 209);



если самолет проходит над головой в направлении на пулемет, прицеливайся через центр диоптра и пересечение вертикальной спицы переднего визира с кольцом, соответствующим скорости движения цели, в нижней или в передней части визира, в зависимости от вертикального или горизонтального положения кольца (рис. 210); если самолет идет над головой в направлении от пулемета, прицеливайся через центр диоптра и пересечение вертикальной спицы переднего визира с кольцом, соответствующим скорости движения цели, в верхней или в задней части визира, в зависимости от вертикального или горизонтального положения кольца (рис. 211);


если самолет проходит по фронту или под углом к нему, прицеливайся через центр диоптра и точку, выбранную на соответствующем кольце переднего визира, с таким расчетом, чтобы продолженная линия цели проходила через центр переднего визира и голова самолета касалась внешнего края кольца (рис. 212 и 213);



если скорость движения самолета не соответствует ни одному из колец переднего визира, то наведи по воображаемой точке между соответствующими кольцами.
Для определения расстояния до самолетов глазомером можно воспользоваться следующими данными (для нормального зрения):
c 1200 метров - можно различить опознавательные знаки,
c 800 метров - видны колеса и шасси,
с 600 метров - видны растяжки,
с 300 метров - видны головы летчиков.

ПРЕКРАЩЕНИЕ ОГНЯ.

Наводчик! Для временного прекращения огня освободи предохранитель и спусковой рычаг.
Помощник наводчика! Доложи установку прицельного кольца, например: "Двенадцать".
Наводчик! При полном прекращении огня разряди пулемет, для чего подай рукоятку вперед доотказа, спусти ударник, установи прицел и целик в исходное положение, положи стойку прицела на крышку короба и вытолкни гильзу или патрон из выводной трубки; после этого доложи: "Ствол и выводная трубка свободны". Панораму оптического прицела закрой чехлом, а если нужно, сними прицел и передай помощнику наводчика для укладки его в коробку.
Помощник наводчика! Вынь ленту из приемника и уложи ее в патронную коробку, отвинти пароотводную кишку, закрой пароотводное отверстие, надень колпачок, закрой заслонку щита и надень на пулемет чехлы.
В условиях мирного времени подается команда "Откинь замок".
Наводчик! По этой команде разряди пулемет, открой крышку короба, подними замок из короба и положи его на затыльник.
Помощник наводчика! Подхвати крышку короба, поставь ее вплотную к щиту и прихвати стойкой прицел.

4. КАК ОПРЕДЕЛИТЬ ВОЗМОЖНОСТЬ
СТРЕЛЬБЫ В ПРОМЕЖУТКИ И МИМО
ФЛАНГА СВОИХ ПОДРАЗДЕЛЕНИЙ

В бою часто представляется вести огонь мимо фланга и в промежутки между подразделениями своих войск, действующих впереди.
Для такой стрельбы прежде всего необходимо строго обеспечить пределы безопасности своих войск, которые приведены в следующей таблице:

Если нормы, указанные в таблице, выдержаны, то стрельба мимо фланга и в промежутки допускается. При этом пули не должны падать рядом с нашими войсками или сзади их, так как свои бойцы могут быть поражены рикошетирующими пулями.
Пример 1. Удаление своих войск от пулемета 400 метров (рис. 214).



Если огонь ведется с помощью оптического прицела, наводят пулемет с нулевой установкой угломера в правофлангвого бойца и закрепляют пулемет. Затем устанавливают угломер (угол безопасности) на 30 - 30. С этой установкой угломера наводят в правофлангового бойца, закрепляют пулемет и ставят ограничитель слева.
Если стрельба ведется с открытым прицелом, то наводчик с помощью пулеметной линейки или пальца отмеряет от правого фланга угол безопасности в 30 тысячных пальцем (рис. 215) и замечает точку на правой границе безопасности. Затем наводит пулемет в замеченную точку и устанавливает ограничитель слева.

Пример 2 (Рис. 216). Свои войска продвинулись вперед на 300 метров. Наводчик находит фланговых бойцов своих передовых подразделений. Затем устанавливает правую и левую границы безопасности по оптическому прицелу или по местности. Величина угла безопасности будет 60 угломерных делений (ширина двух пальцев в удалении 50 сантиметров от глаза). Между правой и левой границами безопасности должен быть промежуток не менее 5 угломерных делений. Если его нет, стрелять нельзя.
Из пулемета можно вести огонь также и через свои войска, однако такой огонь ведется только по командам командира.



5. НАВОДКА ПУЛЕМЕТА ПО УГЛОМЕРУ

П ри непрям

Балтийский государственный технический университет «ВОЕНМЕХ» им. Д. Ф. Устинова

Квантовый артиллерийский дальномер ДАК-2М.

Санкт-Петербург 2002

Наводить включенный дальномер на людей,

Наводить дальномер на зеркально отражающие поверхности и на поверхности близкие по отражению к зеркальным,

Наводить дальномер на солнце.

1. Цель работы.

Целью настоящей работы является изучение принципов работы кван­товых дальномерных устройств, а также их основных узлов и особенностей построения.

2. Введение.

Наряду с радиолокационными, существуют и другие методы опреде­ления координат объекта. Так широкое применение на практике получили оптические локаторы, позволяющие определять все три координаты объекта с высокой точностью. Изучение применения оптических локаторов в качест­ве угломерных устройств выходит за рамки настоящей работы, в дальней­шем будет рассматриваться только определение дальности. Методы опреде­ления дальности с помощью оптико-электронных средств можно разделить на активные, использующие зондирующие сигналы, и пассивные. К послед­ним относятся стреоскопические дальномеры и дальномеры с фокусировкой изображения (например, дальномеры двойного изображения).

Оптические локаторы, к которым относится и данный квантовый дальномер, характеризуются очень высокой разрешающей способностью по дальности и угловым координатам, что обусловлено уменьшением, по срав­нению с устройствами радиодиапазона, длины волны на несколько поряд­ков. В квантовых (лазерных) дальномерах повышение рабочих частот позво­ляет расширить используемую полосу частот. Это позволяет формировать очень короткие (до десятков наносекунд) зондирующие импульсы. Практиче­ски это позволяет получать разрешающую способность по дальности порядка 1 метра при дальности в несколько километров.

Лазерное излучение имеет высокую направленность, что упрощает селекцию объектов, находящихся приблизительно в одном угловом направле­нии, но на существенно различных дальностях, и позволяет устранить свя­занные с этим ошибки.

3. Назначение дальномера.

Артиллерийский квантовый дальномер ДАК-2М с устройством селек­ции целей предназначен для:

          измерения дальности до подвижных и неподвижных целей, местных предметов и разрывов снарядов;

          корректировки стрельбы наземной артиллерии;

          ведения визуальной разведки местности;

          измерения горизонтальных и вертикальных углов целей;

    топогеодезической привязки элементов боевых порядков артиллерии с помощью других топогеодезических приборов.

Дальномер ДАК-2М может включаться в состав комплекса управления огнем артиллерии как устройство разведки и наблюдения, а также сопрягаться со счетно-решающими приборами комплекса.

Дальномер обеспечивает измерение дальности до целей типа танк, автомашина с вероятностью достоверного измерения 0.9 (при отсутствии в створе луча посторонних предметов).

4. Тактико-технические данные.

    Максимальная измеряемая дальность по целям типа танк-автомашина, м 9000

    Диапазон углов наведения:

    диапазон вертикальных углов наведения ±4-50

    диапазон горизонтальных углов наведения ±30

3. Точность измерения параметров цели:

    количество целей, фиксируемых на индикаторе счетчика целей 3

    максимальная ошибка измерения дальности, м <6

    разрешающая способность по дальности, м 3

    точность измерения угловых координат в обеих плоскостях ±00-01

4. Оптические характеристики канала приемника:

    диаметр входного зрачка, мм 96

Угол поля зрения 3"

Похожие статьи