Строение полупроводников. Применение полупроводников. Современные представления об электрических свойствах веществ

Что такое полупроводник и с чем его едят?

Полупроводник - материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях. По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. Полупроводник отличается от проводников сильной зависимостью удельной проводимости от наличия в кристаллической решетки элементов-примесей (примесные элементы) и концентрации этих элементов, а также от температуры и воздействия различных видов излучения.
Основное свойство полупроводника - увеличение электрической проводимости с увеличением температуры.
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. Ширина запрещённой зоны - это ширина энергетического зазора между дном зоны проводимости и потолком валентной зоны, в котором отсутствуют разрешённые состояния для электрона.
Величина ширины запрещённой зоны имеет важное значение при генерации света в светодиодах и полупроводниковых лазерах и определяет энергию испускаемых фотонов.

К числу полупроводников относятся многие химические элементы: Si кремний, Ge германий, As мышьяк, Se селен, Te теллур и другие, а также всевозможные сплавы и химические соединения, например: йодид кремния, арсенид галлия, теллурит ртути и др.). В общем почти все неорганические вещества окружающего нас мира являются полупроводниками. Самым распространённым в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры.

В зависимости от того, отдаёт ли атом примесного элемента электрон или захватывает его, примесные атомы называют донорными или акцепторными. Донорские и акцепторные свойства атома примесного элемента зависят также того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Как выше упоминалось, проводниковые свойства полупроводников сильно зависит от температуры, а при достижениитемпературы абсолютного нуля (-273°С) полупроводники имеют свойства диэлектриков.

По виду проводимости полупроводники подразделяют на n-тип и р-тип

Полупроводник n-типа

По виду проводимости полупроводники подразделяют на n-тип и р-тип.

Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения полупроводников n-типа, называются донорными. Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.

Теория процесса переноса заряда описывается следующим образом:

В четырёхвалентный Si кремний добавляют примесный элемент, пятивалентный As мышьяка. В процессе взаимодействия каждый атом мышьяка вступает в ковалентную связь с атомами кремния. Но остается пятый свободный атом мышьяка, которому нет места в насыщенных валентных связях, и он переходит на дальнюю электронную орбиту, где для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный, способный переносить заряд. Таким образом перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам.
Также сурьмой Sb улучшают свойства одного из самых важных полупроводников – германия Ge.

Полупроводник p-типа

Полупроводник p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными.
«p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей.
Например в полупроводник, четырёхвалентный Si кремний, добавляют небольшое количество атомов трехвалентного In индия. Индий в нашем случае будет примесным элементом, атомы которого устанавливает ковалентную связь с тремя соседними атомами кремния. Но у кремния остается одна свободная связь в то время, как у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, образуя так называемую дырку и соответственно дырочный переход.
По такой же схеме In ндий сообщает Ge германию дырочную проводимость.

Исследуя свойства полупроводниковых элементов и материалов, изучая свойства контакта проводника и полупроводника, экспериментируя в изготовлении полупроводниковых материалов, О.В. Лосев 1920-х годах создал прототип современного светодиода.

Полупроводник - это кристаллический материал, который проводит электричество не столь хорошо, как металлы, но и не столь плохо, как большинство изоляторов. В общем случае электроны полупроводников крепко привязаны к своим ядрам. Однако, если в полупроводник, например, в кремний, ввести несколько атомов сурьмы, имеющей «избыток» электронов, то в этом случае свободные электроны сурьмы помогут кремнию переносить отрицательный заряд.

При замене нескольких атомов полупроводника индием, который легко присоединяет к себе дополнительные электроны, в полупроводнике образуются не занятые электронами «свободные места», или, как говорят физики, «дырки»; которые переносят положительный заряд.

Такие свойства полупроводников привели к их широкому использованию в транзисторах - устройствах для усиления тока, его блокирования или пропускания только в одном направлении. В типичном NPN транзисторе, слой полупроводника с положительной (Р) проводимостью (основание), расположен между двумя слоями полупроводника с отрицательной (N) проводимостью (эмиттером и коллектором). Когда слабый сигнал, например, от интеркома (аппарата селекторной связи), проходит через основание NPN транзистора, эмиссия электронов этот сигнал усиливает.

Строение полупроводников

Полупроводники N-типа содержат избыточное количество электронов, переносящих отрицательный заряд. Полупроводники Р-типа испытывают нехватку электронов, но зато имеют избыток дырок (вакантных мест для электронов), которые переносят положительный заряд.

Отличительные признаки полупроводников

В отличие от проводников, имеющих много свободных электронов, и изоляторов, практически их не имеющих, полупроводники содержат небольшое количество свободных электронов и так называемые дырки (белый кружочек) - вакантные места, оставленные свободными электронами. И дырки и электроны проводят электрический ток.

NPN транзистор

PNP транзистор

Дырки перемещаются от положительного эмиттера (+) к отрицательному основанию (N-слою) и далее через положительный коллектор к отрицательной клемме (-), усиливая электрический ток.

Что такое диод?

В одну сторону да, в другую - нет. Входной сигнал диода показывает переменный ток; из правого графика видно, что через диод проходит только постоянный ток.

Когда отрицательно заряженные электроны (голубые шарики) и положительно заряженные дырки (розовые шарики) расходятся от стыка слоев кремния N-типа и Р-типа в диоде, электрический ток прерывается. На нижнем рисунке справа электроны и дырки перемещаются к стыку, и в результате диод проводит ток только в одном направлении, превращая переменный ток в постоянный.

В этой статье ну нет ничего экстраординарно важного и интересного, только ответ на простой вопрос для "чайников", какие основные свойства отличают полупроводники от металлов и диэлектриков?

Полупроводники - материалы (кристаллы, поликристаллические и аморфные материалы, элементы или соединения) с существованием запрещенной зоны (между зоной проводимости и валентной зоной).

Электронными полупроводниками называют кристаллы и аморфные вещества, которые по величине электропроводности занимают промежуточное положение между металлами (σ = 10 4 ÷10 6 Ом -1 ·см -1) и диэлектриками (σ = 10 -10 ÷10 -20 Ом -1 ·см -1). Однако приведённые граничные значения проводимости весьма условны.

Зонная теория позволяет сформулировать критерий, который даёт возможность разделить твёрдые тела на два класса - металлы и полупроводники (изоляторы). Металлы характеризуются наличием в валентной зоне свободных уровней, на которые могут переходить электроны, получающие дополнительную энергию, например, вследствие ускорения в электрическом поле. Отличительная особенность металлов заключается в том, что у них в основном, невозбуждённом состоянии (при 0 К) имеются электроны проводимости, т.е. электроны, которые участвуют в упорядоченном движении по действием внешнего электрического поля.

У полупроводников и изоляторов при 0 К валентная зона заселена полностью, а зона проводимости отделена от неё запрещённой зоной и не содержит носителей. Поэтому не слишком сильное электрическое поле не в состоянии усилить электроны, расположенные в валентной зоне, и перевести их в зону проводимости. Иными словами, такие кристаллы при 0 К должны быть идеальными изоляторами. При повышении температуры или облучении подобного кристалла электроны могут поглотить кванты тепловой или лучистой энергии, достаточные для перехода в зону проводимости. В валентной зоне при этом переходе появляются дырки, которые также могут участвовать в переносе электричества. Вероятность перехода электрона из валентной зоны в зону проводимости пропорциональна ( g / kT ), где Е g - ширина запрещённой зоны. При большой величине Е g (2-3 эВ) эта вероятность оказывается очень малой.

Таким образом, подразделение веществ на металлы и неметаллы имеет вполне определённую основу. В отличие от этого деление неметаллов на полупроводники и диэлектрики такой основы не имеет и является чисто условным.

Ранее считали, что к диэлектрикам можно отнести вещества с величиной запрещённой зоны Е g ≈ 2÷3 эВ, однако позже выяснилось, что многие из них являются типичными полупроводниками. Более того, было показано, что в зависимости от концентрации примесей или избыточных (сверх стехиометрического состава) атомов одного из компонентов один и тот же кристалл может быть и полупроводником, и изолятором. Это относится, например, к кристаллам алмаза, оксида цинка, нитрида галлия и т.д. Даже такие типичные диэлектрики как титанаты бария и стронция, а также рутил при частичном восстановлении приобретают свойства полупроводников, что связано с появлением в них избыточных атомов металлов.

Деление неметаллов на полупроводники и диэлектрики также имеет определённый смысл, поскольку известен целый ряд кристаллов, электронную проводимость которых не удается заметно повысить ни путём введения примесей, ни путём освещения или нагрева. Это связано либо с очень малым временем жизни фотоэлектронов, либо с существованием в кристаллах глубоких ловушек, либо с очень малой подвижностью электронов, т.е. с чрезвычайно низкой скоростью их дрейфа в электрическом поле.

Электропроводность пропорциональна концентрации n, заряду e и подвижности носителей заряда. Поэтому температурная зависимость проводимости различных материалов определяется температурными зависимостями указанных параметров. Для всех электронных проводников заряд е постоянен и не зависит от температуры. В большинстве материалов величина подвижности обычно слабо уменьшается с ростом температуры из-за увеличения интенсивности столкновений между движущимися электронами и фононами, т.е. из-за рассеяния электронов на колебаниях кристаллической решётки. Поэтому различное поведение металлов, полупроводников и диэлектриков связано в основном с концентрацией носителе заряда и её температурной зависимостью:

1) в металлах концентрация носителей заряда n велика и слабо изменяется при изменении температуры. Переменной величиной, входящей в уравнение для электропроводности, является подвижность. А поскольку подвижность слабо уменьшается с температурой, то также уменьшается и электропроводность;

2) в полупроводниках и диэлектриках n обычно экспоненциально растёт с температурой. Этот стремительный рост n вносит наиболее существенный вклад в изменение проводимости, чем уменьшение подвижности. Следовательно, электропроводность быстро увеличивается с повышением температуры. В этом смысле диэлектрики можно рассматривать как некоторый предельный случай, так как при обычных температурах величина n в этих веществах крайне мала. При высоких температурах проводимость отдельных диэлектриков достигает полупроводникового уровня из-за роста n . Наблюдается и обратное - при низких температурах некоторые полупроводники становятся диэлектриками.

Список литературы

  1. Вест А. Химия твердого тела. Ч.2 Пер. с англ. - М.: Мир, 1988. - 336 с.
  2. Современная кристаллография. Т.4. Физические свойства кристаллов. - М.: Наука, 1981.

Студенты 501 группы химического факультета: Беззубов С.И., Воробьева Н.А., Ефимов А.А.

Наряду с проводниками электричества в природе существует много веществ, обладающих значительно меньшей электропроводимостью, чем металлические проводники. Вещества подобного рода называются полупроводниками.

К полупроводникам относятся: некоторые химические элементы, например селен, кремний и германий, сернистые соединения, например сернистый таллий, сернистый кадмий, сернистое серебро, карбиды, например карборунд, углерод (алмаз), бор, серое олово, фосфор, сурьму, мышьяк, теллур, йод и ряд соединений, в состав которых входит хотя бы один из элементов 4 - 7-й групп системы Менделеева. Существуют также органические полупроводники.

Природа электрической проводимости полупроводника зависит от рода примесей, имеющихся в основном материале полупроводника, и от технологии изготовления его составных частей.

Полупроводник - вещество с 10 -10 - 10 4 (ом х см) -1 , находящееся по этим свойствам между проводником и изолятором. Различие между проводниками, полупроводниками и изоляторами по зонной теории заключается в следующем: в чистых полупроводниках и электронных изоляторах между заполненной зоной (валентной) и зоной проводимости находится запрещенная зона энергий.


Почему полупроводники проводят ток

Полупроводник обладает электронной проводимостью, если в атомах его примеси внешние электроны относительно слабо связаны с ядрами этих атомов. Если в подобного рода полупроводнике создать электрическое поле, то под влиянием сил этого поля внешние электроны атомов примеси полупроводника покинут пределы своих атомов и превратятся в свободные электроны.

Свободные электроны создадут в полупроводнике электрический ток проводимости под влиянием сил электрического поля. Следовательно, природа электрического тока в полупрооводниках с электронной проводимостью та что и в металлических проводниках. Но так как свободных электронов в единице объема полупроводника во много раз меньше, чем в единице объема металлического проводника, то естественно, что при всех прочих одинаковых условиях ток в полупроводнике будет во много раз меньше, чем в металлическом проводнике.

Полупроводник обладает «дырочной» проводимостью, если атомы его примеси не только не отдают своих внешних электронов, но, наоборот, стремятся захватить электроны атомов основного вещества полупроводника. Если атом примеси отберет электрон у атома основного вещества, то в последнем образуется нечто вроде свободного места для электрона - «дырка».

Атом полупроводника, потерявший электрон, называют «электронной дыркой», или просто «дыркой». Если «дырка» заполняется электроном, перешедшим с соседнего атома, то она ликвидируется и атом становится нейтральным в электрическом отношении, а «дырка» смещается на соседний атом, потерявший электрон. Следовательно, если на полупроводник, обладающий «дырочной» проводимостью, воздействовать электрическим полем, то «электронные дырки» будут смещаться в направлении этого поля.

Смещение «электронных дырок» в направлении действия электрического поля аналогично перемещению положительных электрических зарядов в поле и, следовательно, представляет собой явление электрического тока в полупроводнике.

Полупроводники нельзя строго разграничивать по механизму их электрической проводимости, так как наряду с «дырочной» проводимостью данный полупроводник может в той или иной степени обладать и электронной проводимостью.

Полупроводники характеризуются:

    типом проводимости (электронный - n -тип, дырочный - р-тип);

    удельным сопротивлением;

    временем жизни носителей заряда (неосновных) или диффузионной длиной, скоростью поверхностной рекомбинации;

    плотностью дислокаций.

Кремний - наиболее распространенный полупроводниковый материал

Температура оказывает существ, влияние на характеристики полупроводников. Повышение ее преимущественно приводит к уменьшению удельного сопротивления и наоборот, т. е. для полупроводников характерно наличие отрицательного . Вблизи абсолютного нуля полупроводник становится изолятором.

Основой многих приборов служат полупроводники. В большинстве случаев они должны быть получены в виде монокристаллов. Для придания заданных свойств полупроводники легируют различными примесями. К чистоте исходных полупроводниковых материалов предъявляются повышенные требования.


В современной технике полупроводники нашли самое широкое применение, они оказали очень сильное влияние на технический прогресс. Благодаря им удается значительно уменьшить вес и габариты электронных устройств. Развитие всех направлений электроники приводит к созданию и совершенствованию большого количества разнообразной аппаратуры на полупроводниковых приборах. Полупроводниковые приборы служат основой микроэлементов, микромодулей, твердых схем и т. д.

Электронные устройства на полупроводниковых приборах практически безинерционны. Тщательно выполненный и хорошо герметизированный полупроводниковый прибор может служить десятки тыс. часов. Однако некоторые полупроводниковые материалы имеют малый температурный предел (например, германий), но не очень сложная температурная компенсация или замена основного материала прибора другим (напр., кремнием, карбидом кремния) в значительной, степени устраняет и этот недостаток. Совершенствование технологии изготовления полупроводниковых приборов приводит к уменьшению имеющихся еще разброса и нестабильности параметров.

Контакт полупроводник - металл и электронно-дырочный переход (n -р-переход), созданный в полупроводниках, используются при изготовлении полупроводниковых диодов. Двойные переходы (р-n -р или n -р-n ) - транзисторов и тиристоров. Эти приборы в основном применяются для выпрямления, генерации и усиления электрических сигналов.

На основе фотоэлектрических свойств полупроводников создают фотосопротивления, фотодиоды и фототранзисторы. Полупроводник служит активной частью генераторов (усилителей) колебаний . При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов, что используется при создании светодиодов.



Термоэлектрические свойства полупроводников позволили создать термосопротивления полупроводниковые, термоэлементы полупроводниковые, термобатареи и термоэлектрические генераторы, а термоэлектрическое охлаждение полупроводников, на основе эффекта Пельтье, - термоэлектрические холодильники и термостабилизаторы.

Полупроводники используются в безмашинных преобразователях тепловой и солнечной энергии в электрическую - термоэлектрических генераторах, и фотоэлектрических преобразователях (солнечных батареях).

Механическое напряжение, приложенное к полупроводнику, изменяет его электрическое сопротивление (эффект сильнее, чем в металлах), что явилось основой тензометра полупроводникового.

Полупроводниковые приборы получили широкое распространение в мировой практике, революционно преобразуя электронику, они служат основой при разработке и производстве:

    измерительной техники, компьютеров,

    аппаратуры для всех видов связи и транспорта,

    для автоматизации процессов в промышленности,

    устройств для научных исследований,

    ракетной техники,

    медицинской аппаратуры

    других электронных устройств и приборов.

Применение полупроводниковых приборов позволяет создавать новую аппаратуру и совершенствовать старую, приводит к значит, уменьшению ее габаритов, веса, потребляемых мощностей, а значит, уменьшению выделения тепла в схеме, к увеличению прочности, к немедленной готовности к действию, позволяет увеличить срок службы и надежность электронных устройств.

Свое название полупроводники получили оттого, что они занимают промежуточное место между проводниками (металлы, электролиты, ), обладающими большой электропроводимостью, и изоляторами (фарфор, слюда, резина и другие), которые почти не проводят .

Если сравнить удельное в Ом × см для различных веществ, то окажется, что проводники имеют: ρ U = 10 -6 - 10 -3 Ом × см; удельное сопротивление полупроводников: ρ U = 10 -3 - 10 8 Ом × см; а у : ρ U = 10 8 - 10 20 Ом × см. К полупроводникам относятся: окислы металлов - оксиды (Al 2 O 3 , Cu 2 O, ZnO, TiO 2 , VO 2 , WO 2 , MoO 3); сернистые соединения - сульфиды (Cu 2 S, Ag 2 S, ZnS, CdS, HgS); соединения с селеном - селениды; соединения с теллуром - теллуриды; некоторые сплавы (MgSb 2 , ZnSb, Mg 2 Sb, CdSb, AlSb, ClSb); химические элементы - германий, кремний, теллур, селен, бор, углерод, сера, фосфор, мышьяк, а также большое число сложных соединений (гален, карборунд и другие).

Рисунок 1. Германий

Рисунок 2. Кремний

Рисунок 3. Теллур

Полное и широкое исследование свойств полупроводников выполнено советским ученым А. Ф. Иоффе и его сотрудниками.

Электрические свойства полупроводников резко отличаются от свойств проводников и изоляторов. Электропроводимость проводников в сильной степени зависит от температуры, освещённости, наличия и интенсивности электрического поля, количества примесей. При обычной температуре в полупроводниках есть некоторое количество свободных электронов, образовавшихся вследствие разрыва электронных связей. У полупроводников различают два вида : электронную и дырочную. Носителями заряда в полупроводниках при электронной проводимости являются свободные электроны, а при дырочной - связи, лишенные электронов.

Рассмотрим следующий опыт. Возьмем и будем нагревать один его конец, тогда нагретый конец проводника получит положительный заряд. Это объясняется перемещением электронов от горячего конца к холодному, в результате чего на горячем конце проводника получается недостаток электронов (положительный заряд), а на холодном конце избыток электронов (отрицательный заряд). Кратковременное протекание тока по проводнику было вызвано перемещением электронов с одного края проводника на другой. Таким образом, здесь речь идет о проводнике с электронной проводимостью. Однако существуют вещества, которые при подобном опыте ведут себя иначе: нагретый край такого вещества получает отрицательный заряд, а холодный край - положительный заряд. Это возможно, если предположить, что перенос тока осуществляется положительными зарядами.

Рисунок 4. Связь между атомами вещества

Рисунок 5. Собственная проводимость полупроводников
Рисунок 6. Электронная проводимость полупроводника
Рисунок 7. Дырочная проводимость полупроводника

Познакомимся с другим видом проводимости у полупроводников - дырочной проводимостью. В чистых полупроводниках все электроны, слабо связанные с ядрами, участвуют в электронных связях. На рисунке 4, а условно показана заполненная связь между атомами вещества. "Дыркой" называется элемент кристаллической решетки вещества, потерявший электрон, что соответствует появлению положительного заряда (рисунок 4, б ).

Освободившаяся связь может вновь оказаться заполненной, если "дырка" захватит электрон из соседней связи (рисунок 4, в ). Это вызовет переход "дырки" на новое место. В веществе полупроводника, находящегося в нормальных условиях, направление вылета электронов и место образования "дырки" носят хаотический характер. Если к чистому полупроводнику приложить постоянное напряжение, то электроны и "дырки" будут перемещаться (первые против направления сил поля, вторые в противоположном направлении). Если число образующихся "дырок" будет равно числу освободившихся электронов, то, как это бывает у чистых полупроводников, проводимость полупроводников невелика (собственная проводимость). Наличие даже небольшого количества посторонних примесей может изменить механизм электропроводимости: сделать его электронным или дырочным. Рассмотрим конкретный пример. В качестве полупроводника возьмем германий (Ge). В кристалле германия каждый атом связан с четырьмя другими атомами. При увеличении температуры или в результате облучения парные связи кристалла могут быть нарушены. При этом образуется равное количество электронов и "дырок" (рисунок 5).

Добавим к германию в качестве примеси мышьяк. Такая примесь обладает большим числом слабосвязанных электронов. Атомы примеси имеют свой энергетический уровень, располагающийся между энергетическими уровнями свободной и заполненной зон, ближе к последней (рисунок 6). Подобные примеси отдают свои электроны в свободную зону и называются донорными примесями. В полупроводнике окажется наличие свободных электронов, в то время как все связи будут заполнены. Полупроводник будет обладать электронной проводимостью в свободной зоне.

Если теперь в качестве примеси к германию добавит не мышьяк, а индий, то произойдет следующее. Такая примесь обладает малым числом слабо связанных электронов, а энергетический уровень примеси располагается между энергетическими уровнями свободной и заполненной зон, ближе к свободной зоне (рисунок 7). Примеси этого рода принимают в свою зону электроны из соседней заполненной зоны и называются акцепторными примесями. В полупроводнике окажутся незаполненные связи - "дырки" при отсутствии свободных электронов. Полупроводник будет обладать дырочной проводимостью в заполненной зоне.

Теперь станет понятным опыт нагрева полупроводника, когда нагретый конец получал отрицательный заряд, а холодный конец - положительный заряд. Под действием тепла на горячем конце начнут разрушаться связи, возникнут "дырки" и свободные электроны. Если полупроводник содержит примеси, то "дырки" начнут переходить к холодному концу, заряжая его положительно, а нагретый конец полупроводника зарядится отрицательно.

Заканчивая рассмотрение полупроводников, делаем следующий вывод.

Добавлением к полупроводнику примесей можно придать ему преобладающую электронную или дырочную проводимость. Исходя из этого, получают следующие типы полупроводников. Полупроводники с электронной проводимостью называют полупроводниками n -типа (негативные), а с дырочной проводимостью - p -типа (позитивные).

Предлагаем вам также посмотреть учебные видео-фильмы о полупроводниках:

List=PL_QCOTUIndSFAbWcR3t0wYp5IORVEHu3I



Похожие статьи

  • Ким Ир Сен - биография, факты из жизни, фотографии, справочная информация

    Личность правителя всегда оказывает немалое влияние на судьбу страны - с этим, пожалуй, не решится спорить даже самый убеждённый сторонник исторического детерминизма. В особой степени относится это к диктатурам, особенно таким, в которых...

  • Бедность - порок: почему россияне такие бедные, рассказали эксперты

    Официально у нас бедных и тех, кто за чертой бедности не так уж и много, но неофициальные цифры намного серьезнее. Сегодня мы поговорим о том, как живут люди, находящиеся за чертой бедности, и сколько их в России. Сколько бедных и тех...

  • Посинение ногтей на руках и ногах: опасно ли возникновение симптома и как избавиться от проблемы

    При нормальной работе организма ногти на руках и ногах у человека блестящие, бледно-розового цвета. Изменение их привычного цвета - тревожный сигнал о заболевании внутренних органов.Причины появления синих ногтейПосинеть один ноготь или...

  • К чему видеть во сне трусы?

    Согласно итальянскому соннику, если женщина видит себя во сне голой, то наяву она хочет выразить все свои сексуальные фантазии, стать честнее и открыться людям. Такой сон означает ее стремление донести правду относительно реальности. Что...

  • Чем полезен активированный уголь

    В каждой домашней аптечке найдется пачка таблеток непривлекательного темного цвета. Это активированный уголь, простой по составу и недорогой препарат, о пользе и вреде которого до сих пор ведутся споры между учеными. Если в прошлом...

  • Провокационные фотографии александра маврина

    Принадлежащий известному петербургскому фотографу Александру Маврину, оказался заблокирован Роскомнадзором. По словам Маврина, его обвиняют в пропаганде нетрадиционной ориентации и уже не раз вызывали для дачи показаний в полицию. Жалоба...