В каких приборах определяются деформационные характеристики грунтов. Нормативные документы. Определение несущей способности

Прочностью грунтов называется их способность сопротивляться разрушению. В общем случае разрушение грунта может быть вызвано силами разной природы (механическими, термическими, электрическими и др.), поэтому выделяют соответствующие типы прочности грунтов по природе разрушающих воздействий. В инженерно-геологических целях в первую очередь важно знать механическую прочность грунтов, т. е. их способность сопротивляться разрушению под влиянием механических напряжений. Если деформационные характеристики грунтов определяются при напряжениях, не приводящих к разрушению (т. е. докритических), то параметры прочности грунтов соответствуют критическим разрушающим напряжениям и определяются при предельных нагрузках, вызывающих либо разделение тела на части (для упругих грунтов), либо необратимое изменение формы тела в результате деформации пластического течения (для пластичных грунтов).

Физическая природа прочности грунтов определяется силами взаимодействия между их структурными элементами - кристаллами, зернами, обломками, агрегатами, частицами, т. е. зависит от типа и особенностей структурных связей. Чем больше силы взаимодействия между структурными элементами грунта, тем выше его прочность в целом. Поэтому скальные грунты, среди которых преобладают прочные химические (кристаллизационные и цементационные) структурные связи, имеют большую прочность, чем дисперсные грунты со слабыми физическими и физико-химическими структурными связями.

Поскольку на испытываемый образец грунта могут действовать разные напряжения (нормальные, касательные, объемные или их совокупности), то в качестве меры его прочности могут быть выбраны разные виды критических напряжений или их соотношения, именно такие меры являются параметрами прочности.

К настоящему времени известно более двух десятков условий прочности, разработанных для описания поведения глинистых и песчаных грунтов. Согласно классификации, предложенной W.-F. Chen, все напряженные состояния грунтов можно подразделить на одно- и двупараметрические модели. К однопараметрическим моделям относятся условия прочности Треска, Мизеса, Lade, Duncan. К двупараметрическим моделям относятся условия, предложенные Мором-Кулоном, Drucker-Prager, Р. Lade, М.В. Малышевым и др. После публикации W.-F. Chen прошло много лет (1984 г.), и за это время были предложены условия прочности или модели грунта, которые можно назвать многопараметрическими. В наиболее сложные из них входят до 6 независимых параметров, определяемых из очень сложных и дорогостоящих опытов. Несмотря на многообразие условий прочности, на практике применяются лишь несколько из них. Это в первую очередь условие прочности Мора-Кулона, Кэп-модели и многоповерхностные модели (Prevost, 1977, 1985; Dafalias, 1985). Последние две фуппы моделей грунта более сложные и не позволяют получать решения в аналитическом виде, поэтому они используются в нелинейной механике и численном решении задач .

При оценке прочности грунтов чаще всего используют теорию предельного состояния, согласно которой определяют те или иные параметры критических (предельных) значений напряжений, которые может выдержать образец грунта без разрушения. Пределами прочности называются такие пределы, при превышении которых происходит разрушение грунта и он не воспринимает прикладываемых к нему усилий. Критические значения па- раметров соответствуют разным типам напряженного состояния грунта, в которых он может находиться и которые могут харакгеризоваться величинами главных напряжений σ1, σ2 и σ3 , причем σ1, σ2 и σ3 в качестве таковых состояний чаще всего рассматриваются (рис. 8.27):

  • плоскостной сдвиг (σ1 > 0, г > 0, рис. 8.27, а);
  • одноосное растяжение σ1 0, σ2 = σ3 = 0, рис. 8.27, б);
  • одноосное сжатие (когда σ1 > 0, σ2 = σ3 = 0, рис. 8.27, в)
  • трехосное сжатие (σ2 = σ3 ≠ σ1> 0, рис. 8.27 (г, д , е).

Рис. 8.27. Схемы опытов: па сдвиг (а): на одноосное растяжение (б); на одноосное сжатие (в): на трехостное сжатие: на определение недренированной прочности грунтов (г): дренированной прочности песчаных (д) и глинистых (е) грунтов

Прочностные характеристики дисперсных грунтов (угол внутреннего трения и удельное сцепление с) могут быть получены путем испытания грунтов лабораторными методами: на срез или трехосное сжатие, растяжение, но углу естественного откоса, вдавливанием штампа с шаровой или конусообразной поверхностью, а в полевых условиях - испытаниями на срез целиков грунта в шурфах или котлованах. Параметры прочностных свойств и лабораторные методы их определения, регламентируемые действующими нормативными документами, приведены в табл. 8.30.

Для водонасыщенных глинистых грунтов с показателем текучести //,>0,5, органоминеральных и органических грунтов, для которых подготовка целиков для полевых испытаний или отбор образцов для лабораторных испытаний затруднительны, прочностные характеристики (с„) для расчета оснований из этих грунтов в нестабилизированном состоянии могут быть определены полевым методом вращательного среза в скважинах или массиве.

Значения (рис песков и глинистых грунтов для сооружений II и III уровней ответственности могут быть определены полевыми методами поступательного и кольцевого среза в скважинах. При этом для сооружений 11 уровня ответственности полученные значения и с должны уточняться на основе их сопоставления с результатами параллельно проводимых испытаний того же грунта лабораторными методами на срез или трехосное сжатие, а в полевых условиях - испытаниями на срез целиков грунта в шурфах или котлованах.

Значения и с песков и глинистых грунтов могут быть определены методом статического зондирования . а песков (кроме пылеватых водонасыщенных) - методом динамического зондирования. Для сооружений I и II уровней ответственности полученные зондированием значения (рис должны уточняться на основе их сопоставления с результатами параллельно проводимых испытаний того же грунта лабораторными методами на срез или трехосное сжатие, а в полевых условиях - испытаниями на срез целиков грунта в шурфах или котлованах. В остальных случаях допускается определять значения (рис только по данным зондирования [ 114).

Испытания вращательным срезом крыльчаткой следует проводить для оценки максимальных значений сопротивления сдвигу с и органо-минеральных и органических грунтов и глинистых грунтов мягкопластичной, текучей консистенции в недренированных условиях. Методику испытаний и интерпретацию полученных результатов следует выполнять в соответствии с ГОСТ 20276-99 (или ASTM D2573, NEN 5106 при выполнении изысканий совместно с иностранными инвесторами или по их техническому заданию).

Определение прочностных характеристик грунтов в лабораторных условиях следует производить методом трехосного сжатия (ГОСТ 12248), а их результаты использовать для корректировки данных испытаний одноплоскостного среза . Другие виды напряженных состояний могут быть реализованы в приборах прямого и кольцевого сдвига (рис. 8.28, я), в установках с перекашиванием образца (рис. 8.28, б), при помощи лабораторных сдвигомеров-крыльчаток (рис. 8.28, в) и при испытаниях сплошных и полых цилиндрических образцов на кручение (рис. 8.28, г, д). Образцы грунта могут иметь форму: куба, параллелепипеда, сплошного или полого цилиндра, сплошной или полой катушки.

Таблица 8.30

Методы определения прочностных характеристик немерзлых грунтов

Окончание табл. 8.30

Рис. 8.28. Схемы и фотографии приборов:

а - кольцевого сдвига: б - прямого сдвига с перекашиванием образца; в - лабораторный вариант крыльчатки и полевой тестер-крыльчатка; г, д - схемы испытаний сплошных и полых цилиндрических образцов на кручение (81. 92]

Приборы кольцевого сдвига применяются для определения прочности грунтов как при малых, так и при больших сдвиговых деформациях (в сотни процентов). У большинства грунтов наблюдается уменьшение прочности с ростом деформации сдвига после достижения пикового состояния. Этот процесс можно зафиксировать в приборе кольцевого сдвига, а также с помощью прибора прямого среза при кинематическом нагружении образца. В приборе кольцевого сдвига (рис. 8.29), кроме значений максимального и предельного угла внутреннего трения, замеряется параметр остаточной прочности (р г, применяемый при расчетах устойчивости склонов, откосов котлованов, подпорных стен и при моделировании оползневых процессов или движения грунтов в зоне сброса по уже сформировавшейся плоскости скольжения. Главное преимущество испытаний на кольцевой сдвиг заключается в деформации сдвига с постоянной площадью образца в течение всего опыта, а также возможность выполнять испытания грунтов при деформации сдвига более 10...30 %, чего не позволяют приборы прямого среза или простого сдвига. Кроме того, в условиях кольцевого среза не меняется ориентация частиц в послепиковом состоянии, что характеризуется почти нулевым сцеплением и минимальным трением.

При испытаниях в приборе кольцевого сдвига грунт находится в двух кольцах (верхнее или нижнее), одно из которых вращается, а другое (верхнее или нижнее) лежит неподвижно. Опыт проводится при постоянном нормальном давлении, которое определяется по зависимости:

где Р - нагрузка от веса грузов, штампа и штанги; г 0 и г, - соответственно внутренний и наружный радиусы кольцевого штампа.

Касательное напряжение рассчитывается по величине крутящего момента М

Рис. 8.29. Срезные приборы, определяющие прямые и остаточные напряжения: а - схемы опыта с кольцевыми приборами; о - схема кольцевого прибора; в - фотография прибора кольцевого сдвига (производитель Wykeham Farrance)

Метод кольцевого сдвига дает возможность воссоздавать в лаборатории условия, аналогичные естественным, и получать очень точные значения остаточного сопротивления, которые зависят не только от величины нормального давления в плоскости сдвига, но и от скорости сдвига. Обычно при смещении склонов наблюдается скорость движения грунтовых масс от 5 см/год до 50 см/сут.

Устройства простого сдвига с перекашиванием образца (рис. 8.28, б) позволяют моделировать различные условия действия сдвигающих нагрузок. Результаты применяются при расчете устойчивости подводных склонов континентальных шельфов, характеризуемых слоистым залеганием глинистых грунтов; при прогнозе поведения грунтов под фундаментом морских платформ или рядом с боковой поверхностью свай. Установка предназначена для уплотнения образца дренирования и затем сдвига. Деформация сдвига вызывается горизонтальным смещением нижней части образца относительно верхней, кольца скользят друг по другу и при этом диаметр образца остается постоянным, поэтому любые изменения объема являются результатом вертикального движения верхнего прижимного устройства. На этапе сдвига во время испытания вертикальная высота образца поддерживается постоянной с помощью вертикального привода, соединенного обратной связью с датчиком смешения. Образцы грунта могут быть в форме цилиндра, прямоугольника или куба.

Преимущества данного прибора заключается в том, что если в условиях прямого среза разрушение образца грунта происходит вдоль заранее фиксированной горизонтальной плоскости, то в условиях простого сдвига разрушение будет проходить вдоль серии горизонтальных (или вертикальных) плоскостей сдвига по ослабленным участкам грунта с наименьшим сопротивлением. В отличие от испытаний на прямой срез (когда практически невозможно выдержать недренированные условия), при опытах в приборах прямого сдвига образец находится в резиновой оболочке, что позволяет проводить дренированные и недренированные испытания, сохраняя объем грунта, а также измерять поровое давление. Испытания в условиях простого сдвига позволяют определить не только параметры прочности, но и модуль сдвига G.

Испытания на прямой одноплоскостной или кольцевой сдвиг проводятся в основном для таких условий устойчивости грунтов, когда возникают явные плоскости разрыва или когда прочностные характеристики определяются на поверхности контакта іруит- фундамент. Результаты этих испытаний хорошо совпадают. Напряжения в условиях кольцевого сдвига более однородны, при этом испытании легче получить большие деформации сдвига и определить остаточную прочность грунта, чем в приборе прямого сдвига. Подготовка образца для испытаний в условиях прямого сдвига менее трудоемка по сравнению с кольцевым сдвигом.

Сравнение результатов испытаний в условиях простого сдвига с результатами испытаний в условиях трехосного сжатия или прямого среза свидетельствует о том, что в условиях простого сдвига максимальная прочность получается ниже, а разница в значениях остаточной прочности менее существенна. Учитывая эти различия, рекомендуется принимать значения пиковой прочности при срезе с понижающими коэффициентами 0,77-0,85 .

Для полевых исследований прочности слабых грунтов (торфов, илов, текучих и текучепластичных глинистых грунтов) применяется сдвигомер-крыльчатка. Аналогичный миниприбор используется и в лабораторных условиях. Крыльчатка представляет собой две одинаковые прямоугольные взаимно перпендикулярные пластинки, насаженные на вертикальную ось (рис. 8.28, в ), к которой прикладывается крутящий момент и измеряется его предельная величина, используемая для расчета сопротивления недренированному сдвигу с и.

В установках, действующих по схемам торсионного сдвига (рис. 8.28, г) и кручения пустотелого цилиндра (рис. 8.28, <)), образцы фиксируются в основании, и вращение производится вокруг вертикальной оси в верхней части образца. Изначально для этих схем испытаний применялись стабилометры кручения, в 1957 г. W. Kirpatric предложил использовать полые цилиндры грунта, что позволило приводить во вращение верхний нагрузочный штамп, а также создавать давление внутри и с внешней стороны образца. За рубежом приборы для испытаний получили название НСА (Hollow Cylinder Apparatys). При испытании полых цилиндрических образцов (рис. 8.30, в) моделируется истинное трехосное сжатие с вращением направлений осей главных напряжений (рис. 8.30, а). В результате создается широкий диапазон возможных вариантов сложного напряженного состояния в образце грунта, что особенно важно для грунтов анизотропных: можно изменять вертикальное (

Рис. 8.30. Испытания полых цилиндрических образцов: а - максимальные и минимальные напряжения в грунтах основания: б - прибор НСА (производитель Wykeham Farrance); в устройства для подготовки образцов; г - образец грунта перед установкой в камеру трехосного сжатия

Как уже отмечалось, при проведении испытаний грунтов необходимо выбрать условия, которые наиболее полно соответствуют реальным условиям работы грунта в основании будущего сооружения. К основным внешним факторам, влияющим на прочность грунтов, относятся: вид напряженного состояния, условия проведения испытаний (закрытая или открытая система, влияние порового давления и т. п.), скорость нагружения, характер нагружения образца (статическое или динамическое) и др.

Влияние вида напряженного состояния в условиях чистого сдвига, одноосного растяжения и сжатия, а также трехосного сжатия (схемы опытов приведены на рис. 8.27) на прочность грунтов можно проанализировать с помощью кругов Мора паспорта прочности грунта (рис. 8.31). Паспортом прочности грунта является кривая, огибающая предельные круги напряжений Мора в координатах нормальных и касательных напряжений. Предельный круг Мора соответствует предельному напряженному состоянию, достигаемому

при данном соотношении наибольшего и наименьшего главных нормальных напряжений, и имеет радиус R = /2с координатами центра ( / 2; 0). Для построения паспорта прочности по данным определения пределов прочности при объемном сжатии, одноосном сжатии и растяжении по совокупности парных значений o c v = ffmax и оъ = <7 П ип (полученных при объемном сжатии не менее чем при трех различных значениях бокового давления <7з) в координатах строят полуокружности радиусами /2 с координатами центров / 2; 0) К семейству полуокружностей добавляют полуокружности радиусами (т р /2и<т с /2с координатами центров (-я р / 2; 0) и (я с / 2; 0), где <т р - предел прочности при одноосном растяжении; я с - предел прочности при одноосном сжатии.

Рис. 8.31. Паспорт прочности по данным определения пределов прочности при объемном сжатии, одноосном сжатии и растяжении

Из диаграмм (рис. 8.31) следует, что один и гот же грунт, в зависимости от вида напряженного состояния, будет иметь различные величины предельных параметров прочности, наименьшее значение характерно для условий простого одноосного растяжения (разрыва), наибольшее - для условий объемного сжатия.

Характеристики прочности грунтов зависят от скорости нагружения образца , параметры сопротивления скальных и связных грунтов сдвигу (угол внутреннего трения и сцепление с) различны для одного и того же грунта, испытываемого в условиях быстрого или медленного сдвига. С уменьшением скорости нагружения (увеличением длительности испытания) величина удельного сцепления закономерно снижается, а угол внутреннего трения возрастает. С целью идентификации вида напряженного состояния, при котором касательные напряжения достигают предела прочности, применяют такие термины, как кратковременная и длительная устойчивость.

Кратковременная устойчивость предполагает возникновение ряда условий в массиве слабых водонасыщенных глинистых грунтов с низкой проницаемостью, как в ходе строительства, так и при эксплуатации сооружения. Эти условия включают быстрые темпы нагружения основания, отсутствие возможности дренирования, возникновение избыточного порового давления. В этом случае прочность глинистых грунтов оценивается в условиях недренироваиного нагружения.

Длительная устойчивость оценивается в условиях возможности дренирования и частичной (или полной) консолидации грунта с рассеиванием порового давления и стабилизацией деформаций. Эти условия возникают мгновенно при строительстве на крупно- обломочных и песчаных грунтах, в глинистых грунтах стабилизация деформаций продолжается более длительное время. При возникновении данных условий прочность грунта оценивается в условиях дренированного нагружения.

В некоторых случаях необходимо определять и кратковременную, и длительную устойчивость основания. Например, в течение строительства насыпи в водонасыщенных грунтах основания дренирование будет практически отсутствовать, а после ее возведения в процессе дренирования и консолидации прочность будет изменяться. В первом случае нужно проводить неконсолидированно-недренированные испытания, во втором - консолидированно-дренированные или консолидированно-недренированные.

К условиям испытаний, влияющим на прочность грунтов, прежде всего относятся закрытая или открытая (недренированная или дренированная) схемы испытании.

Параметры дренированной прочности определяют в установках прямого среза и трехосного сжатия (испытания консолидированно-дренированные). При определении прочности в условиях открытой системы из грунта при нагружении может отжиматься вода. За счет этого возникающее при передаче на грунт нагрузки (о) поровое давление (и) постепенно рассеивается и при медленном нагружении может упасть до нуля. В неполностью водонасыщенных грунтах поровое давление не учитывают. При дренированном нагружении прочность грунтов зависит в значительной степени от того, испытывает ли грунт сжатие или расширение от действия внешней нагрузки. Если грунт расширяется (например, зона перед подпорной стенкой) или сжимается (за подпорной стенкой), то прочность грунта будет различной. Прочность грунтов при расширении меньше прочности при сжатии.

Параметры недренированной прочности с и получают из результатов неконсолидированно-недренированных испытаний в установках прямого среза и трехосного сжатия, которые отражают поведение глинистого грунта с низкой проницаемостью при любой скорости нагружения, даже при очень медленной. Высокая скорость возведения сооружения и отсутствие возможности дренирования не дают грунту консолидироваться и влияют на его прочность. При определении прочности водонасыщенных грунтов в условиях закрытой системы грунт изолирован от внешней среды, он не может впитывать или отдавать воду при нагружении, его влажность остается постоянной. Возникающее при нагружении образца поровое (или нейтральное) давление (и) увеличивается пропорционально приложенной нагрузке (о) вплоть до момента разрушения образца или остается постоянным при данном постоянном напряжении о.

Сопротивление срезу с ы в водонасыщенных органо-минеральных и органических грунтах допускается отождествлять с величиной удельного сцепления с (по методике = 0), что позволяет вести расчеты несущей способности и устойчивости оснований и откосов по имеющимся расчетным схемам с использованием стандартных программ. Полевые исследования органо-минеральных и органических грунтов с помощью четырехлопастной крыльчатки в ряде случаев являются единственно возможным способом определения их механических свойств. Недренированная прочность используется как классификационный показатель, например, в стандарте Великобритании BS. В табл. 8.31 приведена классификация грунтов по недренированной прочности.

Наличие или отсутствие норового давления в грунтах имеет немалое значение при исследовании их прочности. В большинстве случаев результаты испытаний обрабатываются с использованием условия прочности Кулона или Мора-Кулона. Прочность грунта по Кулону зависит от нормального давления, которое можно выразить через полные и эффективные напряжения. При определении параметров прочности в полных напряжениях поровое давление не учитывают, полагая, что в условиях полного дренирования оно рассеивается, поэтому испытания на стадии сдвига проводят по открытой схеме, допуская дренирование и нагружение образца ступенями с выдержкой до полной стабилизации деформации сдвига. Если поровое давление измеряется, что возможно только при полном водонасыщении образцов и отсутствии дренирования, то при проведении опытов по схеме неконсолидированно-недренированного или консолидированно-недренированного сдвига можно определить параметры прочности в эффективных напряжениях. Чем больше поровое давление и, тем меньшая часть внешнего давления передается на скелет грунта. Для учета влияния порового давления, согласно К. Терцаги, вводят эффективное давление, тогда уравнение Кулона с учетом норового давления принимает вид:

где о" - эффективное давление; и - поровое давление; с" - удельное сцепление (в терминах эффективных напряжений).

Таблица 8.31

Сдвиговая прочность грунтов в недренированных испытаниях

Разновидность грунтов

Сопротивление недренированному сдвигу с„. кПа

Чрезвычайно низкой прочности

Очень низкой прочности

10 < с„ < 20

Низкой прочности

20 < с и < 40

Средней прочности

40 < с и < 75

Высокой прочности

75 < с и < 150

Очень высокой прочности

150 < с„ < 300

Чрезвычайно высокой прочности

с и > 300

Таким образом, если в расчетах устойчивости склонов или несущей способности оснований учитывается норовое давление, то параметры прочности принимают в эффективных напряжениях; если поровое давление не учитывается, то в полных.

Характер нагружения, также влияющий на параметры прочности грунтов, проявляется в разных способах передачи на грунт внешних напряжений. Они могут быть статическими (при действии постоянных или медленно меняющихся нагрузок) или динамическими (при действии переменных, циклических, периодических, импульсных нагрузок и др.). Особенности и закономерности разрушения одного и того же грунта в статических или динамических условиях различны, поэтому при динамических воздействиях прочность грунтов изучается специальными способами.

СП 22.13330.2011
Актуализированная редакция СНиП 2.02.04-88
Автор НИИОСП им.Н.М.Герсеванова

Глава 5.3. п.:

  1. Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения φ, удельное сцепление c , предел прочности на одноосное сжатие скальных грунтов R c , модуль деформации E и коэффициент поперечной деформации υ грунтов). Допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).
    Примечание - Далее, за исключением специально оговоренных случаев, под термином "характеристики грунтов" понимают не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

СП 50-101-2004 "Проектирование и устройство оснований
и фундаментов зданий и сооружений"
Автор НИИОСП им. Н.М.Герсеванова, ГУП Мосгипронисельстрой

п.5.1.8
В состав физико-механических характеристик грунтов входят:

  • - плотность грунта и его частиц и влажность (ГОСТ 5180 и ГОСТ 30416);
  • - коэффициент пористости;
  • - гранулометрический состав для крупнообломочных грунтов и песков (ГОСТ 12536);
  • - влажность на границах пластичности и текучести, число пластичности и показатель текучести для глинистых грунтов (ГОСТ 5180);
  • - угол внутреннего трения, удельное сцепление и модуль деформации грунтов (ГОСТ 12248, ГОСТ 20276, ГОСТ 30416 и ГОСТ 30672);

    См. Нормативные значения этих характеристик - Приложение А СП 22.13330.2016

  • - временное сопротивление при одноосном сжатии, показатели размягчаемости и растворимости для скальных грунтов (ГОСТ 12248).
Для специфических грунтов, особенности проектирования оснований которых изложены в разделе 6, и при проектировании подземных сооружений (раздел 9) дополнительно должны быть определены характеристики, указанные в этих разделах. По специальному заданию дополнительно могут быть определены и другие необходимые для расчетов характеристики грунтов (например, реологические).
К физические характеристики грунтов относятся:
Для специфических грунтов, особенности проектирования оснований которых изложены в разделе 6 СП 22.13330.2011, и при проектировании оснований подземных частей сооружений (см. раздел 9) дополнительно должны быть определены характеристики, указанные в этих разделах.
К грунтам со специфическими неблагоприятными свойствами относятся:
    Просадочные грунты
    Набухающие грунты
    Засоленные грунты
    Органоминеральные и органические грунты
    Элювиальные грунты
    Насыпные грунты
    Намывные грунты
    Пучинистые грунты
    Закрепленные грунты
Определение свойств пучинистых грунтов см. на станице сайта "Пучинистые грунты Особенности проектирования "

При определении расчетного сопротивления грунта R оснований деревянных домов, относящихся к 3 пониженному классу ответственности , по табличным значениям R 0 (В.1-В.10 приложения В) не требуется определения таких физико-механических характеристик, как:

Угол внутреннего трения, удельное сцепление, модуль деформации и коэффициент поперечной деформации грунтов (ГОСТ 12248 , ГОСТ 20276 , ГОСТ 30416 и ГОСТ 30672);

См. пример определения свойств грунтов для замены фундамента на странице сайте: "Пример расчета основания деревянного дома "

Определения

Приложение А. п.:

  1. Коэффициент пористости e определяется по формуле (См. А.6 ГОСТ 25100-2011)

    e = (ρ s - ρ d)/ρ d , (А.5)

      ρ s -плотность частиц (скелета) грунта, масса единицы объема твердых (скелетных) частиц грунта г/см3;
      ρ d - плотность сухого грунта, отношение массы грунта за вычетом массы воды и льда в его порах к его первоначальному объему, г/см3, определяемая по формуле
  1. Плотность сухого грунта (скелета) ρ d определяют по формуле (см. А.16 ГОСТ 25100.2011)

    ρ d = ρ/(1+w ), (А.8)

      где ρ - плотность грунта, г/см 3 (см. ГОСТ 5180);
      w - естественная влажность грунта, %
  1. Показатель текучести I L - отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания Wp, к числу пластичности Ip
    А.18 ГОСТ 25100-2011 , Показатель текучести I L д.е., - показатель состояния (консистенции) глинистых грунтов; определяют по формуле

    I L = (w - w p)/I p , (A.9)

      где w - естественная влажность грунта, % (см. ГОСТ-5180-84);
      w p - влажность на границе раскатывания, % (см. ГОСТ 5180);
      I p - число пластичности, %, (см. А.31 ГОСТ 25100-2011)
  1. Число пластичности I p (См. А.31 ГОСТ 25100-2011), %; определяют по формуле

    I p = w L - w p , (A.17)

      где w L - влажность на границе текучести, % (см. 4 ГОСТ 5180);
      w p - влажность на границе раскатывания, % (см. 5 ГОСТ 5180)

Сжимаемость - способность грунта уменьшаться в объеме под действием внешней силы, характеризуется коэффициентом сжимаемости m 0 (тангенсом угла наклона компрессионной кривой), определяемого по формуле (См. 5.4 ГОСТ 12248-2010)

m 0 = (e i - e i+1)/ (p i+1 - p i) 5.32

    e i и e i+1 - коэффициенты пористости, соответствующие давлениям p i и p i+1 .
Глава 5.1.6. п.:
  1. По измеренным в процессе испытания значениям горизонтальной срезающей и нормальной нагрузок вычисляют касательные и нормальные напряжения τ и σ, МПа, по формулам:

    τ = 10Q / A; (5.3)
    σ = 10F / A; (5.4)


  2. Удельное сцепление c и угол внутреннего трения φ грунта определяются как параметры линейной зависимости

    τ = σ tg(φ) + c (5.5)

      τ и φ определяются по формулам (5.3) и (5.4) = Q/A, (5.1) - касательные напряжения и
      = F/A, (5.2) - нормальные напряжения
      Q и F -соответственно касательная и нормальная сила к плоскости среза, кН
      A - пллощадь среза, см2
Модуль деформации по данным компрессионных испытаний E k - коэф. пропорциональности между давлением и относительной линейное общей деформацией грунта, возникающей под этим давлением, характеризующий остаточные и упругие деформации песков мелких и пылеватых, глинистых грунтов, органо-минеральных и органических грунтов, (См. 5.4 ГОСТ 12248-2010)

Источник: ГОСТ 12248-2010 плотность грунта ρ - отношение массы грунта включая массу воды в его порах к занимаемому этим грунтом объему (г/см 3 т/м 3)
плотность сухого грунта ρ d - отношение массы сухого грунта (исключая массу воды в его порах) к занимаемому этим грунтом объему (г/см 3 т/м 3)
плотность частиц грунта ρ s - отношение массы сухого грунта (исключая массу воды в его порах) к объему твердой части этого грунта (г/см 3 т/м 3). Полная влагоёмкость Wo – максимально возможное содержание в грунте всех возможных видов воды при полном заполнении его пор.

w sat = n.ρ w / ρ d

    где: n – пористость, д.е.,
    ρ w – плотность воды, г/см3,
    ρ d – плотность сухого грунта .
В табл. 9 приведены ориентировочные значения плотностей частиц грунтов ρ s не содержащих водорастворимых солей и органических веществ

Механические свойства грунтов – это их способность сопротивляться изменению объема и формы в результате силовых и физических воздействий.

деформационные - способность грунта прочностные – способность грунта

сопротивляться развитию деформаций; сопротивляться разрушению;

На механические свойства оказывают влияние характер структурных связей частиц, гранулометрический и минеральный состав и влажность грунтов. Основными механическими свойствами грунтов считают: сжимаемость; сопротивление сдвигу; водопроницаемость.

Сжимаемость.

Способность грунта уменьшаться в объеме под воздействием уплотняющих нагрузок называют сжимаемостью, осадкой или деформацией. По физическому строению грунт состоит из отдельных частиц различной крупности и минерального состава (скелет грунта) и пор, заполненных жидкостью (вода) и газом (воздух). При возникновении напряжений сжатия изменение объемов происходит за счет уменьшения объемов, располагающихся внутри грунта пор, заполненных водой. Таким образом, сжимаемость зависит от многих факторов, основными из которых являются физический состав, вид структурных связей частиц и величина нагрузки.

По характеру усадки разделяют упругие и пластические деформации. Упругие деформации возникают в результате нагрузок, не превышающих структурную прочность грунтов, т.е. не разрушающих структурные связи между частицами и характеризуются способностью грунта возвращаться в исходное состояние после снятия нагрузок. Пластические деформации разрушают скелет грунта, нарушая связи и перемещая частицы относительно друг друга. При этом объемные пластические деформации уплотняют грунт за счет изменения объема внутренних пор, а сдвиговые пластические деформации – за счет изменения его первоначальной формы и вплоть до разрушения. При расчетах сжимаемости грунта основные деформационные характеристики определяют в лабораторных условиях согласно коэффициенту относительной сжимаемости, коэффициенту бокового давления и коэффициенту поперечного расширения.

Сопротивление сдвигу

Предельным сопротивлением сдвигу называется способность грунта противостоять перемещению частей грунта относительно друг друга под воздействием касательных и прямых напряжений. Этот показатель характеризуется прочностными свойствами грунтов и используется в расчетах оснований зданий и сооружений. Способность грунта воспринимать нагрузки не разрушаясь, называют прочностью. В песчаных и крупнообломочных несвязных грунтах сопротивление достигается в основном за счет силы трения отдельных частиц, такие грунты называют сыпучими. Глинистые грунты обладают более высоким сопротивлением к сдвигу, т.к. наряду с силой трения сдвигу противостоят силы сцепления. В строительстве этот показатель важен при расчете оснований фундаментов и изготовлении земляных сооружений с откосами.

Сопротивление глинистых грунтов сдвигу t определяется уравнением Кулона:

Для песчаных грунтов, из-за отсутствия сил сцепления, сопротивление сдвигу приобретает вид:

Водопроницаемость

Водопроницаемость характеризуется способностью грунта пропускать через себя воду под действием разности напоров и обуславливается физическим строением и составом грунта. При прочих равных условиях при физическом строении с меньшим содержанием пор, и при преобладании в составе частиц глины водопроницаемость будет меньшей, нежели у пористых и песчаных грунтов соответственно. Нельзя недооценивать данный показатель, т.к. в строительстве он влияет на устойчивость земляных сооружений и обуславливает скорость уплотнения грунтов оснований.

Основными характеристиками сжимаемости грунтов являются модуль общей деформации Е или коэффициент относительной сжимаемости , коэффициент поперечного расширения (коэффициент Пуассона) и коэффициент бокового давления .

1. Коэффициент относительной сжимаемости . При расчете осадок часто используется коэффициент относительной сжимаемости , который определяется по формуле:

Выразим выражение из формул и . Приравниваем правые части этих выражений, решаем их относительно m v , получим:

Или m v *p i =s i /h

Т.о. коэффициент относительной сжимаемости равен относительной осадкеs i /h , приходящейся на единицу действующего давления.

2. Модуль общей деформации Е является коэффициентом пропорциональности между напряжениями и относительными деформациями. Определяется он в полевых и лабораторных условиях. Наиболее распространенный способ – проведение компрессионных испытаний с последующей их обработкой. В этом случае модуль общей деформации будет равен:

;

где β – коэффициент, учитывающий невозможность бокового расширения грунта (для песков и супесей β = 0,76, суглинков β = 0,63, глин β = 0,42.

При испытании грунта диаметром d штампом по результатам лабораторных испытаний, Е определяется расчетом по формуле

Е=(1-ν 2)*w*d*∆p/∆S

3. Коэффициент бокового давления ξ рассматривается как отношение приращения бокового давления (или ) к приращению действующего вертикального давления при обязательном отсутствии боковых деформаций :

По экспериментальным данным значения коэффициентов бокового давления изменяются в следующих пределах: для песчаных грунтов ξ = 0,25-0,37, глинистых ξ = 0,11-0,82. Величина ξ определяется в приборах трехосного сжатия.

4. Коэффициент поперечного расширения ν грунта (коэффициент Пуассона) равен отношению относительных горизонтальных деформаций образца ε х к относительным вертикальным ε z , т.е..

Сопротивление грунта срезу характеризуется касательными напряжениями в предельном состоянии, когда наступает разрушение грунта . Соотношение между предельными касательными τ и нормальными к площадкам сдвига σ напряжениями выражается условием прочности Кулона-Мора

Цытович И.А. Механика грунтов

τ = σ tgφ + c ,

где φ — угол внутреннего трения; с — удельное сцепление.

Характеристики прочности φ и с определяют в лабораторных и полевых условиях. Для предварительных, а также окончательных расчетов оснований зданий и сооружений II и III класса допускается принимать значения φ и с по табл. 1.17 и 1.18.

ТАБЛИЦА 1.17. НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИИ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЕСЧАНЫХ ГРУНТОВ

Песок Характеристика Значения с e
0,45 0,55 0,65 0,75
Гравелистый и крупный с
φ
2
43
1
40
0
38
-
-
Средней крупности с
φ
3
40
2
38
1
35
-
-
Мелкий с
φ
6
38
4
36
2
32
0
28
Пылеватый с
φ
8
36
6
34
4
30
2
26

Примечание. Приведенные в таблице значения относятся к кварцевым пескам (см. табл. 1.12).

ТАБЛИЦА 1.18. НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИЯ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

Грунт Показатель текучести Характеристика Значения с и φ при коэффициенте пористости е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
Супесь 0 < I L ≤ 0,25 с
φ
21
30
17
29
15
27
13
24
-
-
-
-
-
-
0,25 < I L ≤ 0,75 с
φ
19
28
15
26
13
24
11
21
9
18
-
-
-
-
Суглинок 0 < I L ≤ 0,25 с
φ
47
26
37
25
31
24
25
23
22
22
19
20
-
-
0,25 < I L ≤ 0,5 с
φ
39
24
34
23
28
22
23
21
18
19
15
17
-
-
0,5 < I L ≤ 0,75 с
φ
-
-
-
-
25
19
20
18
16
16
14
14
12
12
Глина 0 < I L ≤ 0,25 с
φ
-
-
81
21
68
20
54
19
47
18
41
16
36
14
0,25 < I L ≤ 0,5 с
φ
-
-
-
-
57
18
50
17
43
16
37
14
32
11
0,5 < I L ≤ 0,75 с
φ
-
-
-
-
45
15
41
14
36
12
33
10
29
7

Примечание. Значения с и φ не распространяются на лёссовые грунты.

1.5.1. Определение прочностных характеристик в лабораторных условиях

В практике исследований грунтов применяют метод среза грунта по фиксированной плоскости в приборах одноплоскостного среза. Для получения φ и с необходимо провести срез не менее трех образцов грунта при различных значениях вертикальной нагрузки. По полученным в опытах значениям сопротивления срезу τ строят график линейной зависимости τ = f (σ) и находят угол внутреннего трения φ и удельное сцепление с (рис. 1.5).

Рис. 1.5. Зависимость сопротивления срезу грунта τ от нормального напряжения σ

Различают две основные схемы опыта: медленный срез предварительно уплотненного до полной консолидации образца грунта (консолидировано-дренированное испытание) и быстрый срез без предварительного уплотнения (неконсолидировано-недренированное испытание).

Значения φ и с , полученные по методике медленного консолидированного среза, используются для определения расчетного сопротивления грунта, а также для оценки несущей способности основания, находящегося в стабилизированном состоянии (все напряжения от внешней нагрузки восприняты скелетом грунта). Значения φ и с , полученные по методике быстрого неконсолидированного среза, используются для определения несущей способности медленно уплотняющихся водонасыщенных суглинков и глин, илов, сапропелей, заторфованных грунтов и торфов. В таких грунтах возможно возникновение нестабилизированного состояния (наличие избыточного давления в поровой воде) вследствие их медленной консолидации или быстрой передачи нагрузки от сооружения (силосы, резервуары, склады сырья и т.п.).

Метод определения характеристик прочности φ и с в условиях трехосного сжатия в большей степени соответствует напряженному состоянию грунта в основании сооружения. Испытание проводится на приборе, в котором образец грунта подвергается всестороннему гидростатическому давлению и добавочному вертикальному (осевому). Для определения прочностных характеристик грунтов проводят серию испытаний при различных соотношениях давлений, доводя образец до разрушения, в результате каждого опыта получают значения наибольшего σ 1 и наименьшего σ 3 главных нормальных напряжений в момент разрушения. Графически зависимость между главными касательными и нормальными напряжениями представляют с помощью кругов Мора, каждый из которых строится на разности напряжений σ 1 и σ 3 (рис. 1.6).

Рис. 1.6.

Общая касательная к этим кругам удовлетворяет условию прочности (1.5) и позволяет определить характеристики φ и с .

В приборах трехосного сжатия проводят следующие испытания:

  • - недренированное — дренирование воды из образца грунта отсутствует в течение всего опыта;
  • - консолидировано-недренированное — дренирование обеспечивается в процессе приложения гидростатического давления и образец полностью уплотняется, в процессе приложения осевых нагрузок дренирование отсутствует;
  • - дренированное — дренирование обеспечивается в течение всего испытания.

Недренированные испытания водонасыщенных грунтов проводят для определения прочностных характеристик, выражаемых через общие (тотальные) напряжения. Дренированные испытания проводят для определения прочностных характеристик, выражаемых через эффективные напряжения. При этом в процессе опыта должно быть достигнуто полностью консолидированное состояние грунта. Прочностные характеристики грунтов, выражаемые через эффективные напряжения, могут быть определены также для образцов грунта, испытанных в неполностью консолидированном состоянии, при условии измерения в процессе опыта давления в поровой воде.

Количественной характеристикой прочности скальных грунтов является предел прочности на одноосное сжатие R c , определяемый раздавливанием образца грунта и вычисляемый по формуле

R с = P /F ,

где Р — нагрузка в момент разрушения образца грунта; F — площадь поперечного сечения образца грунта.

1.5.2. Определение прочностных характеристик в полевых условиях

Полевое испытание на срез в заданной плоскости целика грунта, заключенного в кольцевую обойму, аналогично лабораторному испытанию на срез в одноплоскостных срезных приборах. Испытания проводятся в шурфах, котлованах, штреках и т.д. Для получения характеристик φ и с определяют сопротивление срезу не менее чем трех целиков при различных вертикальных нагрузках. Схемы испытаний принимаются те же, что и в лабораторных условиях. Значения φ и с находят на основе построения зависимости (1.5), как это показано на рис. 1.5.

Полевое определение характеристик φ и с в стенах буровой скважины проводится методами кольцевого и поступательного среза. Схемы испытаний приведены на рис. 1.7. Эти методы применяются для испытаний грунтов на глубинах до 10 м (кольцевой срез) и до 20 м (поступательный срез). В методе кольцевого среза используется распорный штамп с продольными лопастями, в методе поступательного среза — с поперечными лопастями. С помощью распорного штампа лопасти вдавливаются в стенки скважины и создастся нормальное давление на стенки. В методе кольцевого среза грунт срезается вследствие приложения крутящего момента, а в методе поступательного среза — выдергивающей силы. Для получения φ и с необходимо провести не менее трех срезов при различных нормальных давлениях на стенки скважины и построить зависимость τ = f (σ) (см. рис. 1.5).

Рис. 1.7.

а — кольцевой; б — поступательный; в — вращательный крыльчаткой: 1 — лопасти; 2 — распорные штампы; 3 — скважины; 4 — штанги; 5 — устройства для создания и измерения усилия

Метод вращательного среза с помощью крыльчатки, вдавливаемой в массив грунта или в забой буровой скважины (см. рис. 1.7), позволяет определить сопротивление срезу τ , поэтому его рекомендуется применять при слабых пылевато-глинистых грунтах, илах, сапропелях, заторфованных грунтах и торфах, так как для них угол внутреннего трения практически равен нулю и можно принять с = τ . Испытания крыльчаткой проводят на глубинах до 20 м.

Для определения характеристик прочности в полевых условиях применяют методы выпирания и обрушения грунта в горных выработках. Значения φ и с вычисляют из условий предельного равновесия выпираемого и обрушаемого массива грунта.

Угол внутреннего трения песчаных грунтов может быть определен с помощью статического и динамического зондирования. По данным статического зондирования угол φ имеет следующие значения:

q c , МПа 1 2 4 7 12 20 30
φ , град 26 28 30 32 34 36 38

Значения φ по данным динамического зондирования приведены в табл. 1.19. Для сооружений I и II класса является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов на срез. Для сооружений III класса допускается определять φ только по результатам зондирования.

ТАБЛИЦА 1.19. ЗНАЧЕНИЯ УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

Похожие статьи

  • Значение карт ленорман в любовных раскладах

    Любовь и личные отношения - это то, что волнует каждого из нас. Кто-то влюбляется, но не знает, испытывает ли интересующий его человек ответные чувства, у кого-то есть постоянный партнёр, но во взаимоотношениях не всё так гладко. И все они...

  • Эзотерическое гадание Таро “Солнце” на свою личность

    В астрологии Солнце символизирует индивидуальность, личность, сознание и волю, уровень энергетического и творческого потенциала. Все планеты вращаются вокруг Солнца, и каждый человек является центром собственного Мира. Возможность...

  • Гадать онлайн на отношения и чувства человека

    ПОДЕЛИЛИСЬ Как он относится ко мне? Гадание на мысли, чувства, подсознание. Во многих жизненных ситуациях клиента интересует, как относится к нему тот или иной человек, и это не праздное любопытство. От того, каковы истинные мысли,...

  • Гадание Что он обо мне думает

    Каждой влюбленной девушке хочется, чтобы ее чувство было взаимным. К сожалению, не изобрели еще такой машины, которая бы помогала читать мысли других людей. Существуют «народные методы», с помощью которых можно разгадать, что творится в...

  • Толкование игральных карт при гадании — секреты из прошлого

    Рассмотрим по очереди предсказательное значения карт при гадании. Значения карт при гадании ♠ Пики ♠: значение карт при гадании Туз пик – потеря, печальное письмо, удар, испуг, неприятность, раскаяние; время определяется как ночь, зима;...

  • Программа помощи ипотечным заемщикам от государства

    С ухудшением экономической обстановки в 2014 году и падением доходов у населения, большинство россиян, оформивших заем на жилье, оказались в неблагоприятной ситуации. Объем просрочек и невыплат резко возрос. Поэтому правительство РФ...