Резисторы полупроводниковые диоды транзисторы. Полупроводниковые транзисторы и диоды. Биополярные и полевые транзисторы

Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двух-

электродной лампы - диода.Поэтому полупроводниковое устройство, содержащее один p-n-переход, называется полупроводниковым (кристаллическим) диодом. Полупроводниковые диоды по конструкции делятся на точечные и плоскостные. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом образуется слой, обладающий р-проводимостью. На границе этого слоя образуется р-п-переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов(выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.

p-n-Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей,

получили название полупроводниковых триодов или транзисторов. Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других

полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева(например, верхний предел рабочей

температуры точечного германиевого триода лежит в пределах 50 - 80 °С).Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью. Транзистор состоит из базы (средняя часть транзистора), эмиттера и коллектора (прилегающие к базе с обеих сторон области с иным типом проводи-

мости). Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором - постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подает-

ся на входное сопротивление , а усиленное снимается с выходного сопротивления. Протекание тока в цепи эмиттера

обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их впрыскиванием - инжекцией - в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщи-

не базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, вся-

кое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора. Транзистор, подобно электронной лампе,

дает усиление и напряжения, и мощности.

25.(Сила Лоренца. Работа силы Лоренца. Эффект Холла)

Сила, действующая на электрический заряд Q, движущийся в магнитном поле со скоростьюV, называется силой Лоренца и выражается формулой ,где В - индукция магнитного поля, в котором заряд движется.

Модуль силы Лоренца , где α - угол между v и В. Сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, поэтому она изменяет только направление этой скорости, не меняя ее модуля. Следовательно, сила Лоренца

работы не совершает. Иными словами, постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей и кинетическая энергия этой частицы при движении в магнитном поле не изменяется. Если на движущийся электрический

заряд помимо магнитного поля с индукцией В действует и электрическое поле с напряженностью Е, то результирующая сила F, приложенная к заряду, равна векторной сумме сил - силы, действующей со стороны электрического поля, и силы Лоренца: Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака заряда Q частицы.

Эффект Холла (1879) - это возникновение в металле (или полупроводнике) с током плотностью j, помещенном в магнитное поле В, электрического поля в направлении, перпендикулярном В к j. Поместим металлическую пластинку с током плотностью j в магнитное

поле В, перпендикулярное j .При данном направлении j скорость носителей тока в металле - электронов - направлена справа налево. Электроны испытывают действие силы Лоренца, которая в данном случае направлена вверх. Таким образом, у верхнего края пластинки возникнет повышенная концентрация электронов (он зарядится отрицательно), а у нижнего - их недостаток (зарядится положительно). В результате этого между краями пластинки возникнет дополнительное поперечное электрическое поле Ев, направленное снизу вверх. Когда напряженность Ев этого поперечного поля достигнет такой величины, что его действие на заряды будет уравновешивать силу Лоренца, то установится стационарное распределение зарядов в поперечном направлении.

Тогдагде а - ширина пластинки; ∆ф - поперечная (холловская) разность потенциалов.

Учитывая, что сила тока I = jS =nevS (S - площадь поперечного сечения пластинки толщиной d, n - концентрация электронов, v - средняя скорость упорядоченного движения электронов,j-плотность тока=env), получимт.е. холловская поперечная разность потенциалов пропорциональна магнитной индукции В, силе тока / и обратно пропорциональна толщине пластинки d.

- постоянная Холла, зависящая от вещества.По измеренному значению постоянной Холла можно: 1) определить кон-

центрацию носителей тока в проводнике (при известных характере проводимости и заряде носителей); 2) судить о природе проводимости полупроводников, так как знак постоянной Холла совпадает со знаком заряда е носителей тока. Поэтому эффект

Холла - наиболее эффективный метод изучения энергетического спектра носителей тока в металлах и полупроводниках.

Классификация полупроводниковых приборов и их назначение.

В промышленной электронике используют большое число различных типов полупроводниковых приборов, которые можно разделить на несколько основных групп: 1) полупроводниковые резисторы; 2) полупроводниковые диоды; 3) биполярные транзисторы; 4) поле­вые транзисторы; 5) тиристоры.

Полупроводниковые резисторы и диоды являются двухэлектродными приборами, биполярные и полевые транзисторы-трехэлектродными приборами. Тиристоры могут быть как двухэлектродными, так и трехэлектродными.

В полупроводниковых резисторах применяют изотропный (однородный) полупроводниковый материал, электрические свойства которого определяют электрические характеристики резистора. В полупроводниковых диодах используют полупроводники с различными типами электропроводности, образующие один р-n-переход. Электрические характеристики диода определяются в основном электрическими свойствами p-n-перехода.

В биполярных транзисторах полупроводники с различными типами электропроводности образуют два р-n -перехода. Электрические характеристики биполярных транзисторов обусловлены электрическими свойствами этих р-п-переходов и существенно зависят от их взаимодействия. Полевые транзисторы основаны на полупроводниках с различными типами электропроводности, которые образуют один р-n -переход. Но в отличие от диодов и биполярных транзисторов электрические характеристики полевых транзисторов зависят от взаимодействия изо­тропного полупроводникового канала с р-n -переходом.

В тиристорах применяют полупроводники с различными типами электропроводности, которые образуют три или более р- n -перехода. Основные электрические характеристики тиристоров определяются взаимодействием этих р- n -переходов.

Полупроводниковые диоды

Полупроводниковым диодом называют электропреобразовательный полупроводниковый прибор с одним электрическим переходом, имеющий два вывода.

Классификация и условное графическое обозначение полупроводниковых диодов приведены в табл. 2.2. Как видно из таблицы, все полупроводниковые диоды делятся на два класса: точечные и плоскостные.

В точечном диоде используется пластинка германия или кремния с электропроводностью n-типа, толщиной 0,1-0,6 мм и площадью 0,5-1,5 мм 2 ; с пластинкой соприкасается заостренная стальная проволочка (рис, 2.5), образующая р- n -переход в месте контакта.

Вольт-амперные характеристики точечного диода при различных температурах приведены на рис.

Из-за малой площади контакта прямой ток и междуэлектродная емкость таких диодов сравнительно невелики, что позволяет применять их в области очень высоких частот (СВЧ-диоды). Точечные диоды служат в основном для выпрямления переменного тока (выпрями­тельные диоды).

В плоскостных диодах р-n -переход образуется двумя полупроводниками с различными типами электропроводности, причем площадь перехода у различных типов диодов лежит в пределах от сотых долей квадратного миллиметра (микроплоскостные диоды) до нескольких десятков квадратных сантиметров (силовые диоды).

По способу внесения примесей диоды делят на сплавные и диффузионные.

Электрические характеристики плоскостного диода определяются характеристиками р-n -перехода. В зависимости от назначения диода в нем используются те или иные характеристики р-n –перехода.

Рассмотрим более подробно типы и характеристики различных плоскостных диодов.

Выпрямительный диод- полупроводниковый прибор, в котором так же, как и в точечном диоде, используются выпрямительные свойства р-n -перехода.

Конструкция мощного выпрямительного диода показана на рис. 2.7. Маломощные выпрямительные диоды, а также выпрямительные диоды, предназначенные для работы в высокочастотных и импульсных цепях, имеют, как правило, конструкцию, аналогичную точечным диодам.

Вольтамперная характеристика мощного выпрямительного диода приведена на рис. 2.8.

Благодаря большой площади перехода плоскостные диоды рассчитаны на большой прямой ток. Обычно прямое напряжение диода не превышает 1-2 В, при этом плотность тока в полупроводнике достигает 1-10 А/мм2, что вызывает некоторое повышение его температуры. Для сохранения работоспособности германиевого диода его температура не должна превышать 85-100° С. Кремниевые диоды могут работать при температуре 150-200° С.

При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток (рис. 2.8), обусловленный движением неосновных носителей заряда через р-n -переход.

При повышении температуры р-n -перехода число неосновных носителей заряда увеличивается за счет перехода часта электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает.

В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейший рост тока и, наконец, тепловой пробой (разрушение) р-n -перехода. Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7-0,8) U проб. Даже кратковременное повышение обратного напряжения сверх пробивного, как правило, приводит к пробою р-n -перехода и выходу диода из строя.

Основными параметрами точечных и плоскостных выпрямительных диодов являются: прямой ток диода I пр, который нормируется при оп­ределенном прямом напряжении (обычно 1-2 В). Максимально допустимый прямой ток диода I пр max , максимально допустимое обратное напряжение диода U обр max ; обратный ток диода I обр, который нормируется при максимальном обратном напряжении U обр max . Параметры различных выпрямительных диодов приведены в табл.

Полупроводниковый стабилитрон - полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

Полупроводниковый стабилитрон работает на участке электрического пробоя р-n -перехода. Для предотвращения теплового пробоя конструкция стабилитрона обеспечивает эффективный отвод тепла от р-n -перехода. Чаще всего материалом для стабилитронов служит кремний. Вольт-амперная характеристика полупроводникового стабилитрона приведена на рис.

Как видно из рис., в области пробоя напряжение на стабилитроне U CT лишь незначительно изменяется при больших изменениях тока стабилизации I CT . Такую характеристику стабилитрона применяют для получения стабильного напряжения, например в параметрических стабилизаторах напряжения.

Основными параметрами полупроводникового стабилитрона являются: стабилизирующее напряжение U CT ; динамическое сопротивление на участке стабилизации Rд = d U CT /dI CT ; минимальный ток стабилитрона I ст min ; максимальный ток ста­билитрона I ст max ; температурный коэффициент напряжения на участке стабилизации TKU = d U CT /dT 100%.

Стабилизирующее напряжение современных стабилитронов лежит в пределах 1-1000 В и зависит от толщины запирающего слоя р-n перехода.

Туннельный диод - полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперных характеристиках при прямом напряжении участка отрицательной дифференциальной проводимости (см. рис.).

В качестве рабочей используют прямую ветвь в. а. х.

Материалом для туннельных диодов служит сильно легированный германий или арсенид галлия.

Основными параметрами туннельного диода являются: ток пика Iп (кривая1 на рис.) и отношение тока пика к току впадины Iп/Iв. Для выпускаемых отечественной промышленностью диодов Iп = 0,1-100 мА, а Iп / Iв =5 - 20.

Туннельные диоды являются быстродействующими полупроводниковыми приборами и применяются в генераторах высокочастотных колебаний и быстродействующих импульсных переключателях.

Обращенный диод - разновидность туннельного диода, у которого ток пика Iп = 0 (кривая 2 на рис.). Если к обращенному диоду приложить прямое напряжение Uпр < 0,3 В, то пряой ток диода Iпр = 0, в то же время даже при небольшом обратном напряжении (порядка десятков милливольт) обратный ток диода достигает нескольких миллиампер в результате туннельного пробоя. Таким образом, обращенный диод обладает вентильными свойствами при малых напряжениях именно в той области, где обычные выпрямительные диоды этими свойствами не обладают. При этом направлением наибольшей проводимости является направление, соответствующее обратному току.

Обращенные диоды применяют, как и туннельные диоды в импульсных устройствах, а также в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.

Варикап - полупроводниковый диод, в котором используется зависимость емкости

р-n -перехода от обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой величиной емкости. Полупроводниковым материалом для изготовления варикапов является кремний. Зависимость емкости варикапа от обратного напряжения показана на рис.

Основными параметрами варикапа являются: общая емкость варикапа Св, которая фиксируется обычно при небольшом обратном напряжении Uo6p = 2-5 В; коэффициент перекрытия по емкости Кс = Cmax/Cmin, Для большинства варикапов Св = 10-500 пФ, а коэффициент перекрытия по ем­кости Кс = 5-20.

Варикапы применяют в системах дистанционного управления и в параметрических усилителях с малым уровнем собственных шумов.

Ф о.т о д и о д, фотоэлемент полупроводниковый, светодиод - полупроводниковые диоды, использующие эффект взаимодействия излучения (видимого, инфракрасного или ультрафиолетового) с носителями заряда (электронами и дырками) в запирающем слое р-n перехода.

Полупроводниковым диодом называется прибор с двумя выходами и одним электиронно-дырочным переходом

Полупроводниковые диоды применяются в устройствах радиоэлектроники, автоматики и вычислительной техники, силовой преобразовательной техники. Диоды большой мощности используются в силовых установках для питания тяговых электродвигателей, привода станков и механизмов

Полупроводниковые диоды имеют ряд преимуществ по сравнению с электронными лампами: небольшие габариты, малую массу, высокий КПД, отсутствие накаливаемого источника электронов, большой срок службы, высокую надежность.

Важное свойство полупроводниковых диодов – односторонняя проводимость – широко применяется в устройствах выпрямления, ограничения и преобразования электрических сигналов.

Диоды классифицируются по назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам (точечные и плоскостные), исходному полупроводниковому материалу.

По функциональному назначению различают полупроводниковые диоды: выпрямительные, импульсные, стабилитроны (опорные), фотодиоды, светоизлучающие диоды

1. выпрямительные предназначенные для преобразования переменного тока в постоянный и используют свойство р-н перехода, а также других электрических переходов хорошо проводить ток в одном направлении и плохо – в противоположном. Эти токи и соответствующие напряжения называют прямыми и обратными токами и напряжениями. различают низко и высокочастотные выпрямительные диоды. Первые применяют в преобразовательных устройствах энергетической электроники, вторые – для преобразования радиосигналов

2. импульсные предназначены для преимущественной работы в импульсных устройствах. Их свойства определяют параметры, учитывающие инерционность переключения диода: емкость перехода, интервал времени восстановления обратного сопротивления

3. стабилитроны предназначены для стабилизации постоянного напряжения и ограничения выбросов напряжения. В этих диодах используется явление неразрушающего электрического пробоя р-н перехода при некоторых значениях обратного напряжения. Важным параметром является температурный коэффициент стабилизации напряжения.

В основу маркировки положен буквенно-цифровой код

Первая буква или цифра обозначает материал полупроводникового кристалла: 1или Г – германий; 2 – К – кремний;3-А – арсенид галлия

Вторая буква обозначат класс диода: Д- выпрямительный, Аи – СВЧ диоды, В – варикап, С- стабилитрон, И -туннельный диод;



3 последующие цифры характеризуют тип или область применения 101-399 - выпрямление переменного тока, 401-499 – работа в высокочастотных или сверх частотных цепях, 501-599 - импульсные системы

Последняя цифра -обозначает конструктивные или другие особенности диода

Транзисторами называются активные полупроводниковые приборы с двумя взаимодействующими р-н переходами и тремя выводами, применяемые для усиления и генерирования электрических колебаний. (в связи, телевидении, радиолокации, радионавигации, автоматике, телемеханике, вычислительной и измерительной технике.)

Транзистор иметь трехслойную структуру, состоящую из чередующихся областей с различными типами электропроводимости р-н-р или н-р-н Принцип действия транзистора основан на использовании физических процессов, происходящих при переносе основных электрических зарядов из эмитерной области в коллекторную (крайние зоны) через базу (средняя зона). Назначением эмитерного перехода является инжекция (впрыскивание) основных носителей эмитерра в базовую область

Различают 4 режима работы транзистора:

Активный (переход эмиттер- база включен в прямом направлении а переход коллектор-база – в обратном)

Инверсный(переход эмиттер- база включен в обратном направлении а переход коллектор-база – в прямом)

Режим отсечки – оба перехода включены в обратном направлении

Режим насыщения - оба перехода включены в прямом направлении

Недостатком транзистора является относительно высокая нестабильность их параметров и характеристик. Причины нестабильности: влияние температуры окружающей среды, изменение параметров при старении с течением времени, разброс параметров в процессе изготовления однотипных транзисторов.

Транзисторы классифицируются по материалу, способу движения неосновных носителей в базовой области, мощности и частоте, назначению и способу изготовления

Подготовлено

Учеником 10 «А» класса

Школы № 610

Ивчиным Алексеем

Реферат на тему:

«Полупроводниковые диоды и транзисторы, области их пременеия»

1. Полупроводники: теория и свойства

2. Основные полупроводниковые приборы (Строение и применение)

3. Типы полупроводниковых приборов

4. Производство

5. Область применения

1.Полупроводники: теория и свойства

Сначала надо познакомиться с механизмом проводимости в полупроводниках. А для этого нужно понять природу связей удерживающих атомы полупроводникового кристалла друг возле друга. Для примера рассмотрим кристалл кремния.

Кремний-четырехвалентный элемент. Это означает, что во внешней

оболочке атома имеются четыре электрона, сравнительно слабо связанные

с ядром. Число ближайших соседей каждого атома кремния также равно

четырем. Взаимодействие пары соседних атомов осуществляется с помощью

паоноэлектронной связи, называемой ковалентной связью. В образовании

этой связи от каждого атома участвуют по одному валентному электрону, ко-

торые отщепляются от атомов (коллективизируются кристаллом) и при

своем движении большую часть времени проводят в пространстве между

соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга. Каждый атом образует четыре связи с соседними,

и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла.

Валентные электроны принадлежат всему кристаллу. Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкои температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение.

Электронная проводимость.

При нагревании кремния кинетическая энергия частиц повышается, и

наступает разрыв отдельных связей. Некоторые электроны покидают свои орбиты и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образуя электрический ток.

Проводимость полупроводников обусловленную наличием у металлов свободных

электронов электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеливается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10в17 до 10в24 1/м в3. Это приводит к уменьшению сопротивления.

Дырочная проводимость.

При разрыве связи образуется вакантное место с недостающим электроном.

Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с остальными, нормальными связями. Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один

из электронов, обеспечивающих связь атомов, перескакивает на место об-

разовавшиеся дырки и восстанавливает здесь парноэлектронную связь.

а там, откуда перескочил этот электрон, образуется новая дырка. Таким

образом, дырка может перемещаться по всему кристаллу.

Если напряженность электрического поля в образце равна нулю то перемещение дырок, равноценное перемещению положительных зарядов, происходит беспорядочно и поэтому не создает электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток связанный с перемещением дырок. Направление движения дырок противоположно направлению движения электронов.

Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью. Проводимость при этих условиях называют собственной проводимостью полупроводников. Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов, например, в германии при комнатной температуре ne=3на10в23 см в –3. В то же время число атомов германия в 1 см кубическом порядка 10в23. Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов.

Существенная особенность полупроводников состоит в том, что в них

при наличии примесей наряду с собственной проводимостью возникает

дополнительная - примесная проводимость. Изменяя концентрацию

примеси, можно значительно изменять число носителей заряда того

или иного знака. Благодаря этому можно создавать полупроводники с

преимущественной концентрацией либо отрицательно, либо положи-

тельно заряженных носителей. Эта особенность полупроводников откры-

вает широкие возможности для практического применения.

Донорные примеси.

Оказывается, что при наличии примесей, например атомов мышьяка, даже при очень малой их концентрации, число свободных электронов возрастает во

много раз. Происходит это по следующей причине. Атомы мышьяка имеют пять валентных электронов, четыре из них участвуют в создании ковалентной связи данного атома с окружающими, например с атомами кремния. Пятый валентный электрон оказывается слабо связан с атомом. Он легко покидает атом мышьяка и становится свободным. Концентрация свободных электронов значительно возрастает, и становится в тысячу раз больше концентрации свободных электронов в чистом полупроводнике. Примеси, легко отдающие электроны называют донорными, и такие полупроводники являются полупроводниками n-типа. В полупроводнике n-типа электроны являютсн основныим носителями заряда, а дырки - неосновными.

Акцепторные примеси.

Если в качестве примеси использовать индий, атомы которого трехвалентны, то характер проводимости полупроводника меняется. Теперь для образования нормальных парноэлектронных связей с соседями атому индия не

достает электрона. В результате образуется дырка. Число дырок в крис-

талле равно числу атомов примеси. Такого рода примеси на-

зывают акцепторными (принимающими). При наличии электрического поля

дырки перемешаютс по полю и возникает дырочная проводимость. По-

лупроводники с преобладанием дырочкой проводимости над электрон-

ной называют полупронодниками р-типа (от слова positiv - положительный).

2.Основные полупроводниковые приборы (Строение и применение)

Существуют два основных полупроводниковых приборов: диод и транзистор.

В нястояшее время для выпрямления электрическигй тока в радиосхемах наряду с двухэлектродными лампами вся больше применяют полупроводниках диоды, так как они обладают рядом преимуществ. В электронной лампе носители заряда электроны возникают за счет нагревания катода. В p-n переходе носители заряда образуется при введении в кристалл акцепторной или донорной примеси.Таким образом, здесь отпадает необходимость источника энергии для получения носителей заряда. В сложных схемах экономия энергии, получается за счет этого, оказывается весьма значительной значительной. Кроме того, полупроводниковые выпрямители при тех же значениях выпрямленого тока более миниатюрны, чем ламповые. Полупроводниковые диоды изготовляют из германия, кремния. селена и других веществ. Рассмотрим как создается p-n переход при использовании днорной примеси, этот переход не удастся получить путем механического соеденения двух полупроводников различных типов, т.к. при этом получается слишком большой зазор между полупроводииками.Эта толщина должна быть не больше межатомных растояний. По этому в одну из поврхностей образца вплавляют индий. Вследствие диффузии атомов индии индия в глубь монокристалла германня у поверхности германия преобразуется область с проводимцстью р-типа. Остальная часть образца германии, в которуй атомы индмя нс проникли, по-прежнему имеет проводимосгь n-типа. Между областями возникает p-n переход. Вполупроводниковом диоде германий служит катодом, а индий - анодом. На рисунке 1 показано прямое (б) и обратное (в) подсоеденение диода.

Вольт-Амперная характеристика при прямом и обратном соединении показана на рисунке 2.

Заменили лампы, очень широко используются в техники, в основном для выпрямителей, также диоды нашли применение в различных приборах.

Транзистор.

Рассмотрим один из видов транзистора из германия или кремния с введенными в них донорными и акцепторными примесями. Распределение примесей таково, что создается очень тонкая (порядка нескольких микрометров) прослойка полупроводника n-типа между двумя слоями полупроводника р-типа рис. 3. Эту тонкую прослойку называют основанием или базой.В кристалле образуются два р-n-перехода, прямые направления которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изображенную на рисунке 3. При данном включении

левый р-n переход является прямым и отделяет базу от области с проводимостью р-типа, называемую эмитером. Если бы не было правого р –n -перехода, в цепи эмиттер - база существовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напря-

жения) и сопротивления цепи, включая малое сопротивление прямого пе-

рехода эмиттер - база. Батарея Б2 включена так, что правый р-n-переход в схеме (см. рис. 3) является обратным. Он отделяет базу от правой области с проводимостью р-типа, называемой коллектором. Если бы не было левого p-n-перехода, сила тока и цепи коллектора была бы близка к нулю. Так как сопротивление обратного перехода очень велико. При существовании же тока в левом р -n переходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере.При создании напряжения между эмиттером и базой основные носители полупроводника р-типа - дырки проникают в базу, гдр они являютс уже леосновными носителями. По-скольку толщина базы очень мала и число основных носителей (электронов) в ней невелико, попавшие в нее дырки почти не объединяются (не рекомбинируют) с электронами базы и проникают н коллектор за счет диффузии. Правый р-n-переход закрыт для основных носителей заряда базы – электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см.рис. 3) плоскости много меньше сечения в вертикальной плоскости. Сила тока в коллекторе, практи чески равная силе тока в эмиттере, изменяется вместе с током в эмиттере. Сопротивление резистора R мало влияет на ток в коллекторе, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника переменного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе. При большом сопротивление резистора изменение напряжения на нем может в десятки тысяч раз превышать изменение сигнала в цепи эмиттера.Это означает усиление напряжения. Поэтому на нагрузке R можно получить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера.Они заменяют электронные лампы, широко используются в технике.

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводниковыми диодами называют полупроводниковые приборы с одним электрическим пе­реходом и двумя выводами. Они применяются для выпрям­ления переменного тока, детектирования переменных ко­лебаний, преобразования СВЧ колебаний в колебания промежуточной частоты, стабилизации напряжения в цепях постоянного тока и т. д. По назначению полупро­водниковые диоды делятся на выпрямительные, высоко­частотные, варикапы, стабилитроны и др.

Выпрямительные диоды. Выпрямительные полупро­водниковые диоды предназначены для преобразования переменного тока в постоянный.

Основу современных выпрямительных диодов состав­ляет электронно-дырочный переход (ЭДП), который по­лучают методом сплавления или диффузии. В качестве материала применяется германий или кремний.

Для получения больших значений выпрямленных токов в выпрямительных диодах используются ЭДП с большой площадью, поскольку для нормальной работы диода плотность тока через переход не должна превышать 1-2 А/мм 2 .

Такие диоды называют плоскостными. Конструкция плоскостного полупроводникового диода малой мощности приведена на рис. 2.1, а. Для улучшения отвода тепла в диодах средней и большой мощности к их корпусу приваривается винт, с помощью которого диоды крепятся к специальному радиатору или шасси (рис. 2.1, б).

Основной характеристикой выпрямительного диода является еговольт-амперная характеристика (ВАХ). Вид ВАХ зависит от материала полупроводника и темпе­ратуры (рис. 2.2, а и б).

Основными параметрами выпрямительных полупро­водниковых диодов являются:

постоянное прямое напряжение U np при заданном пря­мом токе ;

максимально допустимое обратное напряжение U o 6 p max , при котором диод еще может нормально работать дли­тельное время;

постоянный обратный ток , протекающий через диод при обратном напряжении, равном U o 6 p max ;

средний выпрямленный ток , который может дли­тельно проходить через диод при допустимой темпера­туре его нагрева;

максимально допустимая мощность , рассеивае­мая диодом, при которой обеспечивается заданная на­дежность диода.

По максимально допустимому значению среднего выпрямленного тока диоды делятся на маломощные (), средней мощности () и большой мощности (). Выпрямительные диоды большой мощности называются силовыми.

Маломощные выпрямительные элементы, представляю­щие собой последовательно соединенные выпрямительные полупроводниковые диоды, называют выпрямительными столбами. Выпускаются также выпрямительные блоки, в которых выпрямительные диоды соединяются по опреде­ленной (например, мостовой) схеме.

Выпрямительные полупроводниковые диоды способны работать на частотах 50... 10 5 Гц (силовые диоды - на частотах 50 Гц), т. е. являются низкочастотными.

Высокочастотные диоды. К высокочастотным относятся полупроводниковые диоды, способные работать на час­тотах до 300 МГц. Диоды, работающие на частотах свыше 300 МГц, называют сверхвысокочастотными (СВЧ).

С ростом частоты увеличивается шунтирование диф­ференциального сопротивления обратно смещенного ЭДП зарядной емкостью. Это приводит к уменьшению обрат­ного сопротивления и ухудшению выпрямительных свойств диода. Так как значение зарядной емкости пропорцио­нально площади ЭДП, то для ее уменьшения необходимо уменьшать площадь ЭДП.

Малую площадь перехода имеют микросплавные дио­ды, но их. недостатком является накопление в базе не­основных носителей заряда, инжектируемых в нее при пря­мом включении диода. Это ограничивает быстродействие (частотный диапазон) микросплавных диодов.

Лучшим быстродействием обладают и, следовательно, более высокочастотными являются точечные диоды, спо­собные работать в диапазоне СВЧ. В их конструкции металлическая пружинка диаметром около 0,1 мм острием прижимается к кристаллу полупроводника. Материал пружинки подбирается таким, чтобы работа выхода элект­ронов из него была больше, чем из полупроводника. При этом на границе металл-полупроводник образуется запи­рающий слой, называемый барьером Шоттки - по имени немецкого ученого, исследовавшего это явление. Диоды, работа которых основана на использовании свойств барье­ра Шоттки, называются диодами Шоттки. В них электриче­ский ток переносится основными носителями заряда, вследствие чего отсутствуют явления инжекции и на­копления неосновных носителей заряда.

Высокочастотные и СВЧ диоды применяются для выпрямления высокочастотных колебаний (выпрямитель­ные), детектирования (детекторные), управления уровнем мощности (переключательные), умножения частоты (умножительные) и других нелинейных преобразований электрических сигналов.

Варикапы. Варикапами называют полупроводни­ковые диоды, действие которых основано на использо­вании зависимости емкости от обратного напряжения. Варикапы используются в качестве элемента с электри­чески управляемой емкостью.

Характер зависимости показан на рис. 2.3, а. Эту зависимость называют вольт-фарадной характеристикой варикапа. Основными параметрами

варика­пов являются:

номинальная емкость измеренная при заданном об­ратном напряжении ;

коэффициент перекрытия емкости Кс, определяемый отношением емкостей варикапа при двух значениях об­ратного напряжения;

максимально допустимое обратное напряжение ;

добротность Q B определяемая как отношение реактив­ного сопротивления варикапа к сопротивлению потерь.

Полупроводниковые стабилитроны. Полупровод­никовым стабилитроном называют полупроводни­ковый диод, напряжение на котором сохраняется с опре­деленной точностью при изменении проходящего через него тока в заданном диапазоне. Он предназначен для стабилизации напряжения в цепях постоянного тока.

ВАХ стабилитрона показана на рис. 2.4, а, а услов­ное обозначение - на рис. 2.4, б.

Если ЭДП создать с двух сторон кремниевой пластины, то получится стабилитрон с симметричной ВАХ - сим­метричный стабилитрон (рис. 2.4, в).

Рабочим участком стабилитрона является участок электрического пробоя. При изменении тока, протекаю­щего через стабилитрон, от значения до значения . напряжение на нем мало отличается от значения На этом свойстве основано использование стабили­тронов.

Принцип работы стабилизатора напряжения на крем­ниевом стабилитроне (рис. 2.4, г) заключается в том, что при изменении напряжения U ВХ изменяется ток, протекаю­щий через стабилитрон, а напряжение на стабилитроне и подключенной параллельно ему нагрузке R практически не меняется.

Основными параметрами кремниевых стабилитронов являются:

напряжение стабилизации U ст;

минимальный и максимальный токи ста­билизации;

максимально допустимая рассеиваемая мощность

дифференциальное сопротивление на участке стабили­зации ;

температурный коэффициент напряжения на участке стабилизации

У современных стабилитронов напряжение стабилиза­ции лежит в пределах от 1 до 1000 В при токах стабили­зации от 1 мА до 2 А. Для стабилизации напряжений менее 1 В используется прямая ветвь ВАХ кремниевого диода, называемого стабистором. У стабисторов В. Путем последовательного соединения стабилитро­нов (или стабисторов) можно получить любое требуе­мое напряжение стабилизации.

Дифференциальное сопротивление на участке стаби­лизации примерно постоянно и для большинства стаби­литронов составляет 0,5...200 Ом. Температурный ко­эффициент напряжения может быть положительным (у стабилитронов с ) и отрицательным (у стаби­литронов с U CT < 6 В) и для большинства стабилитронов находится в пределах (- 0,5... + 0,2) %/°С.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Биполярным транзистором (БТ) или просто транзистором называют полупроводниковый прибор с двумя взаимодействующими ЭДП и тремя или более выводами, усилительные свойства которого обусловлены явлениями инжекции и экстракции неосновных носителей заряда.

Электронно-дырочные переходы образуются между тремя областями полупроводника с различными типами электропроводности. В соответствии с порядком чередо­вания р- и n-областей БТ подразделяются на транзисторы типа р- п - р и транзисторы типа п-р - п (рис. 2.5).

Средняя область транзистора называется базой, одна крайняя область - эмиттером (Э), а другая - коллекто­ром (К). Обычно концентрация примесей в эмиттере больше, чем в коллекторе. У БТ типа п - р - п база имеет электропроводность р-типа, а эмиттер и коллектор - n-типа.

ЭДП, образованный между эмиттером и базой, на­зывают эмиттерным, а между базой и коллектором - коллекторным.

Режимы работы транзистора. В зависимости от спо­соба подключения эмиттерного и коллекторного ЭДП к источникам питания биполярный транзистор может работать в одном из четырех режимов: отсечки, насы­щения, активном и инверсном.

Эмиттерный и коллекторный ЭДП в режиме отсечки (рис. 2.6, а) смещаются в обратном, а в режиме насы­щения (рис. 2.6, 6) - в прямом направлениях. Кол­лекторный ток в этих режимах практически не зависит от напряжения и тока эмиттера.

Режимы отсечки и насыщения используются при ра­боте БТ в импульсных и ключевых устройствах.

При работе транзистора в активном режиме его эмит-терный переход смещается в прямом, а коллекторный - в обратном направлении (рис. 2.6, в).

Под действием прямого напряжения 11эь в эмиттерной цепи протекает ток , создающий токи коллектора и базы , так что

Коллекторный ток содержит две составляющие: управляемую , пропорциональную току эмит­тера, и неуправляемую , создаваемую дрейфом не­основных носителей через обратно смещенный кол­лекторный переход. Коэффициент пропорциональности называют статическим коэффициентом пере­дачи тока эмиттера. Для большинства современных БТ и более.

Ток базы включает в себя рекомбинационную со­ставляющую , обусловленную электронами, посту­пающими в базу для компенсации положительного за­ряда рекомбинирующих в базе дырок, и неуправляемую составляющую коллекторного тока , так что

При использовании БТ в качестве усилительного элемента один из выводов должен быть общим для вход-ной и выходной цепей. В схеме, приведенной на рис. 2.6, в, общим электродом является база. Такую схему включе­ния БТ называют схемой с общей базой (ОБ) и обычно изображают так, как показано на рис. 2.7, а. Кроме схемы ОБ, на практике также применяются схемы с общим эмиттером (ОЭ) и общим коллектором (ОК).


В схеме ОЭ (рис. 2.7, б) связь между выходным и входным токами определяется уравнением

Коэффициент называется статическим коэффициент-том передачи тока базы. Он связан с коэффициентом соотношением

При значения находятся в пределах 19...99.

Составляющая представляет собой обратный (неуправляемый) ток коллектора в схеме ОЭ. Этот ток связан с обратным током в схеме


ОБ соотношением

Из соотношения (2.4) следует, что обратный ток кол­лектора в схеме ОЭ значительно больше, чем в схеме ОБ. Это означает, что изменение температуры в схеме ОЭ в большей степени влияет на изменение токов (а значит, и на изменение статических характеристик и параметров), чем в схеме ОБ. Это один из недостатков включения БТ по схеме ОЭ.

При включении БТ по схеме ОК. (рис. 2.7, в) связь между выходным и входным токами определяется соотношением

Из сравнения выражений (2.2) и (2.5) следует, что зависимости между входными и выходными токами БТ в схемах ОЭ и ОК примерно одинаковы. Это позволяет для расчета схем ОЭ и ОК использовать одинаковые характеристики и параметры.

Инверсный режим отличается от активного противо­положной полярностью напряжений, прикладываемых к эмиттерному и коллекторному ЭДП.

Статические характеристики. Статические характери­стики выражают сложные связи между токами и напря

жениями электродов транзистора и зависят от способа его включения.



На рис. 2.8, а показано семейство входных характе­ристик БТ типа n - р - n, включенного по схеме ОЭ, кото­рые выражают зависимость при . При входная характеристика представляет собой


прямую ветвь ВАХ эмиттерного ЭДП. При положитель­ном напряжении коллектора входная характеристика смещается вправо.

Выходные характеристики (рис. 2.8, б) отражают за­висимость при . Крутой участок характеристик соответствует режиму насыщения, а поло­гий - активному режиму. Зависимость между коллектор­ным и базовым токами на пологом участке определяется выражением (2.2).

Малосигнальные параметры статического режима. При работе транзистора в усилительном режиме его свойства определяются малосигнальными параметрами, для которых транзистор можно считать линейным эле­ментом. На практике наибольшее применение получили малосигнальные гибридные или h-параметры. Токи и напряжения при малых амплитудах переменных состав­ляющих в системе h-параметров связаны следующими соотношениями:


- входное сопротивление;

- коэффициент обратной связи по напряжению

- коэффициент прямой передачи по току;

- выходная проводимость.

Параметры и измеряются в режиме короткого замыкания выходной цепи, а параметры и - в ре­жиме холостого хода входной цепи. Эти режимы легко реализуются. Значения h-параметров зависят от способа включения транзистора и на низких частотах могут быть определены по статическим характеристикам. При этом амплитуды малых токов и напряжений заменяются при-ращениями. Так, например, при включении транзистора по схеме с ОЭ формулы для параметров и , опре­деляемых по входным характеристикам в точке А (рис. 2.8, а), записываются в виде:

Параметры и определяются по выходным (рис. 2.8, б) характеристикам по формулам:


Аналогично определяются -параметры при включе­нии транзистора по схеме с ОБ.

Малосигнальные параметры и соответственно называются коэффициентами передачи тока эмиттера и тока базы. Они характеризуют усилительные свойства транзистора по току для переменных сигналов, а их зна­чения зависят от режима работы транзистора и от частоты усиливаемых сигналов. Так, с увеличением частоты уменьшается модуль коэффициента передачи тока базы

Частота, на которой уменьшается в раза по сравнению с его значением на низкой частоте, называется предельной частотой передачи тока базы и обозначается . Частота, на которой умень­шается до 1, называется граничной частотой БТ и обозна­чается . По значению граничной частоты транзисторы подразделяются на низкочастотные, среднечастотные, высокочастотные и сверхвысокочастотные.

ТИРИСТОРЫ

Тиристором называют полупроводниковый прибор с двумя устойчивыми состояниями, который имеет три и более перехода и может переключаться из закрытого состояния в открытое и наоборот.

Тиристоры с двумя выводами называют диодными или динисторами, а с тремя выводами - триодными или тринисторами.

Динисторы. Структура динистора состоит из четырех областей полупроводника с чередующимися типами электропроводности , между которыми образуются три ЭДП. Крайние ЭДП являются эмиттер-ными, а средний - коллекторным. Область называют эмиттером или анодом, область - катодом.

Подключение анода динистора к положительному по­люсу внешнего источника , а катода - к отрицатель­ному соответствует прямому включению динистора. При обратной полярности напряжения источника имеет место обратное включение.

При прямом включении динистор можно представить в виде комбинации двух транзисторов р - n - р и n - р - n (рис. 2.9, а) с коэффициентами передачи эмиттерного тока и .

Ток , протекающий через динистор, содержит дыроч­ную инжекционную составляющую транзистора , электронную инжекционную составляю­щую транзистора и обратный ток кол­лекторного перехода, т. е.

Пока , динистор закрыт. При в динисторе развиваются процессы, приводящие к лавинообразному увеличению инжекционных составляющих тока и переключению коллекторного перехода в прямое направление. При этом сопротивление дини- стора резко уменьшается и падение напряжения на нем не превышает 1-2 В. Остальное напряжение источника падает на ограничительном резисторе (рис. 2.9, б).

При обратном включении динистора через него про- текает небольшой обратный ток.

Тринисторы. Тринистор отличается от динистора на- личнем дополнительного управляющего вывода от базо-вой области (рис. 2.10, а). Вывод может быть сделан от любой базы. Источник подключенный к этому выводу, создаёт

ток управления , который складывается с основным током. В результате переключение тринистора из закрытого состояния в открытое происходит при меньшем значении U a (рис. 2.10, б).

В пятислойных структурах путем соответствующего выполнения крайних областей можно получить симметричную ВАХ (рис. 2.10, в). Такой тиристор называют симметричным. Он может быть диодным (диак) или триодным (триак).

Выключение тиристора осуществляется уменьшением (или прерыванием) анодного тока или изменением полярности анодного напряжения.

Рассмотренные тиристоры называются незапираемыми. Существуют также запираемые тиристоры, которые из открытого состояния в закрытое могут быть переведены изменением тока управляющего электрода. Они отли­чаются от незапираемых конструкцией.

Параметры тиристоров. Основными параметрами ти­ристоров являются:

напряжение включения ;

отпирающий ток управления ;

ток выключения ;

остаточное напряжение U np ;

время включения t вкл;

время выключения ;

время задержки t 3 ;

максимальные скорости нарастания прямого напря­жения (du/dt) max и прямого тока (di/dl) max .

Тиристоры широко применяются в управляемых вы­прямителях, преобразователях постоянного напряжения в переменное (инверторах), стабилизаторах напряжения,

в качестве бесконтактных переключателей, в электропри­водах, устройствах автоматики, телемеханики, вычисли­тельной техники и т. д.

Условные графические обозначения тиристоров по­казаны на рис. 2.11.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор (ПТ) - это полупроводни­ковый прибор, усилительные свойства которого обуслов­лены потоком основных носителей заряда одного знака, протекающим через проводящий канал, и который управ­ляется электрическим полем.

Управляющий электрод, изолированный от канала, называют затвором. По способу изоляции затвора по­левые транзисторы делятся на три типа:

1) с управляющим р - n-переходом, или с р - т-за­твором;

2) с металлополупроводниковым затвором, или с затвором Шоттки;

3) с изолированным затвором.

Полевые транзисторы с р - n-затвором. В полевом транзисторе с р- n-затвором (рис. 2.12) канал n-типа изолирован от подложки и затвора р-n-пере-

ходами, которые вследствие выполнения условия обра­зуются, в основном, в канале. При толщина кана­ла наибольшая, и его сопротивление минимальное. Если на затвор подать по отношению к источнику отрицательное напряжение , то р - n-переходы расширятся, тол­щина канала уменьшится, а его сопротивление возрастет. Следовательно, если между истоком и стоком включить источник напряжения , то силой тока I с, протекаю­щего через канал, можно управлять путем изменения сопротивления канала с помощью напряжения, подавае­мого на затвор. На этом принципе и основана работа ПТ с р - n-затвором.

Основными статическими характеристиками ПТ с р - n-затвором являются передаточные (сток-затворные) и выходные (стоковые) характеристики (рис. 2.13).

Напряжение затвора, при котором канал полностью перекрывается, а ток стока уменьшается до десятых долей микроампера, называют напряжением отсечки и обозна­чают .

Ток стока при U 3И = 0 называют начальным током стока.

Выходные характеристики содержат крутую, или оми­ческую, и пологую области. Пологая область называется также областью насыщения или областью перекрытия канала.

Ток стока, протекая через канал, создает на его рас­пределенном сопротивлении падение напряжения, которое увеличивает обратные напряжения канал-затвор и ка­нал-подложка, что приводит к уменьшению толщины канала. Наибольшего значения обратные напряжения достигают у границы со стоком, и в этой области сужение канала оказывается максимальным (рис. 2.12). При некотором значении напряжения происходит смыка­ние обоих р- n-переходов в области стока и перекрытие канала. Такое напряжение стока называют напряжением перекрытия или напряжением насыщения (). При подаче на затвор обратного напряжения происходит до­полнительное сужение канала, и его перекрытие наступает при меньшем значении напряжения .

Полевые транзисторы с затвором Шоттки. В ПТ с за­твором Шоттки управление сопротивлением канала осу­ществляется изменением под действием напряжения за­твора толщины выпрямляющего перехода, образованного на границе между металлом и полупроводником. По сравнению с р - n-переходом выпрямляющий переход металл - полупроводник позволяет существенно умень­шить длину канала: до 0,5...1 мкм. При этом значительно уменьшаются и размеры всей структуры ПТ, вследствие чего ПТ с барьером Шоттки способны работать на более высоких частотах - до 50...80 ГГц.

Полевые транзисторы с изолированным затвором. Эти транзисторы имеют структуру металл - диэлект­рик - полупроводник и называются кратко МДП-транзисторами. Если в качестве диэлектрика исполь­зуется оксид кремния, то их называют также МОП-транзисторами.

Существуют две разновидности МДП-транзисторов: с индуцированным и со встроенным каналами.

В МДП-транзисторах с индуцированным каналом p-типа (рис. 2.14) области стока и истока р-типа образуют с n-областью подложки два встречно

включенных ЭДП, и при подключении к ним источника любой по­лярности ток в цепи будет отсутствовать. Если же на затвор относительно истока и подложки подать отрица­тельное напряжение, то при достаточном значении этого напряжения в приповерхностном слое полупроводника, расположенном под затвором, произойдет инверсия типа электропроводности и р-области стока и истока окажутся соединенными каналом р-типа. Такое напряжение затвора называют пороговым и обозначают . С увеличением отрицательного напряжения затвора увеличивается глу­бина проникновения инверсионного слоя в полупроводник, что соответствует увеличению толщины канала и умень­шению его сопротивления.

Передаточные и выходные характеристики МДП-тран-зистора с индуцированным каналом р-типа представлены на рис. 2.15. Падение напряжения на сопротивлении канала уменьшает напряжение между затвором

и каналом и толщину канала. Наибольшее сужение канала будет у стока, где напряжение оказывается наименьшим .

В МДП-транзисторах со встроенным каналом между областями стока и истока уже в стадии изготовления создается тонкий приповерхностный слой (канал) с та­ким же типом электропроводности, какую имеют сток и исток. Поэтому в таких транзисторах ток стока , называемый начальным, протекает и при .

Статические выходные и передаточные характеристики МДП-транзистора со встроенным каналом р-типа пока­заны на рис. 2.16.

Дифференциальные параметры ПТ. Кроме рассмотрен­ных выше параметров, свойства ПТ характеризуются дифференциальными параметрами: крутизной передаточ­ной характеристики, или крутизной ПТ; дифференци­альным сопротивлением и статическим коэффициентом усиления.

Крутизна ПТ при характе­ризует усилительные свойства транзистора и для мало­мощных транзисторов обычно составляет несколько мА/В.

Дифференциальное сопротивление при представляет собой сопротивление канала ПТ переменному току.

Крутизну ПТ можно определить по статическим вы­ходным или передаточным характеристикам (рис. 2.16) на основании выражения

а дифференциальное сопротивление - по выходным ха­рактеристикам в соответствии с выражением

Статический коэффициент усиления при обычно рассчитывается по формуле .

Условные графические обозначения полевых тран­зисторов показаны на рис. 2.17.

Полевые транзисторы используются в усилителях с большим входным сопротивлением, ключевых и логи­ческих устройствах, а также в управляемых аттенюато­рах в качестве элемента, сопротивление которого изме­няется под действием управляющего напряжения.


Похожая информация.




Похожие статьи

  • Ким Ир Сен - биография, факты из жизни, фотографии, справочная информация

    Личность правителя всегда оказывает немалое влияние на судьбу страны - с этим, пожалуй, не решится спорить даже самый убеждённый сторонник исторического детерминизма. В особой степени относится это к диктатурам, особенно таким, в которых...

  • Бедность - порок: почему россияне такие бедные, рассказали эксперты

    Официально у нас бедных и тех, кто за чертой бедности не так уж и много, но неофициальные цифры намного серьезнее. Сегодня мы поговорим о том, как живут люди, находящиеся за чертой бедности, и сколько их в России. Сколько бедных и тех...

  • Посинение ногтей на руках и ногах: опасно ли возникновение симптома и как избавиться от проблемы

    При нормальной работе организма ногти на руках и ногах у человека блестящие, бледно-розового цвета. Изменение их привычного цвета - тревожный сигнал о заболевании внутренних органов.Причины появления синих ногтейПосинеть один ноготь или...

  • К чему видеть во сне трусы?

    Согласно итальянскому соннику, если женщина видит себя во сне голой, то наяву она хочет выразить все свои сексуальные фантазии, стать честнее и открыться людям. Такой сон означает ее стремление донести правду относительно реальности. Что...

  • Чем полезен активированный уголь

    В каждой домашней аптечке найдется пачка таблеток непривлекательного темного цвета. Это активированный уголь, простой по составу и недорогой препарат, о пользе и вреде которого до сих пор ведутся споры между учеными. Если в прошлом...

  • Провокационные фотографии александра маврина

    Принадлежащий известному петербургскому фотографу Александру Маврину, оказался заблокирован Роскомнадзором. По словам Маврина, его обвиняют в пропаганде нетрадиционной ориентации и уже не раз вызывали для дачи показаний в полицию. Жалоба...