Вентильный фотоэффект (фотоэффект в запирающем слое). Различают фотоэффект внутренний, вентильный и внешний "фотоэффект вентильный" в книгах

Фотоэффект запорного слоя

Рассмотрена физика фотоэффекта запорного (запирающего) слоя (вентильный фотоэффект). Механизм возникновения электрподвижущих сил под действием света проанализирован на примере закиси меди.

В разделе фотопроводимость было показано, что под действием поглощенного света электроны могут переходить из заполненной зоны в свободную, создавая таким образом фотопроводимость. При этом в полупроводнике возникает лишь дополнительная проводимость, но не образуется никаких собственных электродвижущих сил. Однако известно и другое явление - появление электродвижущих сил в результате освещения полупроводника. Например, если подвергнуть полупроводник неравномерному освещению так, чтобы одни части образца освещались значительно сильнее, а другие значительно слабее, можно в ряде случаев обнаружить некоторую разность потенциалов между светлыми и темными участками. Это явление объясняется тем, что в момент освещения электроны начинают диффундировать из освещенных участков в темные в большем числе, чем в обратном направлении. Такая преимущественная диффузия приводит к тому, что темные участки в случае электронного механизма проводимости постепенно заряжаются отрицательно, а светлые - положительно. Вследствие этого внутри полупроводника образуется постепенно нарастающее электрическое поле, которое, в конце концов, установит равновесное состояние, характерное тем, что электронные потоки в ту и другую сторону сравняются. Когда наступит равновесие, между светлым и темным участками полупроводника будет существовать некоторая разность потенциалов, доходящая иногда до 0,2 В.

Однако самое интересное проявление воздействия света на полупроводник заключается в существовании так называемого фотоэффекта запорного слоя.

Окислим медную пластинку, образовав на ней слой закиси меди Сu 2 0, которая является классическим полупроводником. Нанесем на поверхность закиси меди очень тонкий слой металла, например серебра. Известно, что очень тонкие металлические слои полупрозрачны. Затем составим простую электрическую цепь. К полупрозрачному серебряному электроду подведем провод от одного зажима гальванометра, второй зажим которого соединим с медной пластинкой. Эта схема характерна тем, что в ней нет источника тока. Если направить на верхний полупрозрачный серебряный электрод поток совета, то стрелка гальванометра уйдет далеко вправо от своего нулевого положения, так как в цепи пойдет ток. Это явление обусловливается существованием в системе металл - полупроводник запорного слоя.

В рассматриваемом случае электроны под действием света переходят из закиси меди сквозь запирающий слой в медь. Следовательно, медная пластинка заряжается отрицательно, а полупрозрачный электрод положительно. Таким образом, облучение светом меднозакисной поверхности вызывает в цепи появление электрического тока. Аналогичное явление наблюдается и у других полупроводников. Особенно ярко этот эффект проявляется в системах, включающих такие полупроводники, как сернистый таллий, сернистое серебро, селен, германий, кремний, сернистый кадмий.

Явление возникновения электродвижущей силы или электрического тока под действием света в системах, состоящих из электронного и "дырочного" полупроводников, запорного слоя и металлических электродов, получило название фотоэффекта запорного слоя или вентильного фотоэффекта.

Какова природа вентильного фотоэффекта? Механизм этого явления складывается из нескольких этапов. Первый этап заключается в том, что поглощенный свет освобождает в полупроводнике одновременно электроны и дырки, образуя так называемые пары "электрон-дырка". Освобождение пар сводится к тому, что электроны из заполненной зоны перебрасываются в свободную зону, становясь, таким образом, электронами проводимости, а дырки остаются в заполненной зоне и получают также возможность участвовать в электропроводности.

Если бы свет поглощался в каком-нибудь одном полупроводнике, не контактирующим с другим полупроводником, то возникшие под действием света пары увеличили бы лишь проводимость данного полупроводника и на этом бы все дело и кончилось. Совсем иное имеет место в рассматриваемой нами системе, состоящей из полупроводников с электронной проводимостью (обозначаемых буквой n) и дырочной проводимостью (обозначаемых буквой p). Между обоими полупроводниками заключен запирающий слой. Контакт р и n полупроводников приводит к образованию между ними контактного электрического поля. И если работа выхода "дырочного" полупроводника больше работы выхода электронного, что обязательно для двух полупроводников одного и того же химического состава, то это контактное электрическое поле направлено от электронного полупроводника к "дырочному". Что же произойдет в этом случае с парами? Очевидно, что "освобожденные" светом неосновные носители тока, т. е. электроны в дырочном полупроводнике или дырки в электронном, под действием этого поля будут через запирающий слой переходить из одного полупроводника в другой. По мере перехода неосновных носителей тока из одного полупроводника в другой будет увеличиваться их накопление в одной части рассматриваемой системы, в то время как в другой части будет происходить накопление основных носителей тока. Таким образом, образованные светом пары начнут разделяться: электроны концентрироваться в электронном полупроводнике, а дырки - в дырочном. Это накопление не может продолжаться беспредельно потому, что параллельно с возрастанием концентрации дырок в "дырочном" полупроводнике и электронов - в электронном возрастает создаваемое ими электрическое поле, которое препятствует переходу неосновных носителей из одного полупроводника через запирающий слой в другой полупроводник. Вместе с тем по мере возрастания этого поля возрастает и обратный поток неосновных фотоносителей. В конце концов, наступит динамическое равновесие, когда число неосновных носителей, перемещающихся за единицу времени через запирающий слой, сравняется с числом тех же носителей, перемещающихся за тот же самый промежуток времени в обратном направлении. В этот момент между верхним и нижним электродами установится некоторая окончательная разность потенциалов, которая по существу и будет представлять собой фотоэлектродвижущую силу.

Говоря об установлении подобного динамического равновесия, следует иметь в виду, что число неосновных фотоносителей N перемещающихся за единицу времени из освещаемого полупроводника через запирающий слой в другой полупроводник, зависит от интенсивности светового потока. С увеличением интенсивности светового потока увеличивается численное значение N. Сначала это увеличение идет по линейному закону, а затем возрастание N начинает все больше и больше отставать от возрастания интенсивности светового потока до тех пор, пока не наступает полное насыщение. В соответствии с изменением N в зависимости от изменения светового потока изменяется и величина фотоэлектродвижущей силы, которая, в конечном счете, и представляет в этом явлении главный интерес.

Таков в самых общих чертах механизм возникновения фотоэлектродвижущей силы в системе, состоящей из р и n полупроводников и заключенного между ними запирающего слоя.

Вентильный фотоэффект особенно активно протекает в полупроводниковых системах с большой диффузионной длиной "неосновных" носителей тока и соответственно большим временем их жизни.

Из рассмотрения механизма возникновения вентильной фотоэлектродвижущей силы видно, что электрод, непосредственно контактирующий с электронным полупроводником, всегда заряжается отрицательно, в то время как электрод, непосредственно контактирующий с дырочным полупроводником, заряжается положительно. Поэтому у разных типов вентильных фотоэлементов верхний полупрозрачный электрод может приобретать как положительный заряд, так и отрицательный.

Открытие фотоэффекта запорного слоя расширило возможности практического использования полупроводников и легло в основу устройства вентильных фотоэлементов - приборов, прямым и непосредственным путем преобразующих лучистую энергию в электрическую.

М.С.Соминский. Полупроводники. (Фотоэффект запорного слоя).

Цель работы: ознакомление с вентильным фотоэлементом, исследование вольт-амперных характеристик его.

Задача: снять семейство вольт-амперных характеристик при различных освещенностях, определить оптимальные нагрузочные сопротивления и оценить КПД фотоэлемента.

Приборы и принадлежности: , кремниевый фотоэлемент, магазин сопротивлений, милливольтметр, миллиамперметр.

ВВЕДЕНИЕ

Вентильный фотоэффект заключается в возникновении фото-ЭДС в вентильном, т. е. выпрямляющем, контакте при его освещении. Наибольшее практическое применение имеет вентильный фотоэффект, наблюдаемый в р- n-переходе. Такой переход возникает обычно во внутренней области кристаллического полупроводника, где меняются тип легирующей примеси (с акцепторной на донорную) и связанный с этим тип проводимости (с дырочной на электронную).

Если контакт между полупроводниками р - и n-типа отсутствует, то уровни Ферми на их энергетических схемах (рис. 1) расположены на разной высоте: в р-типа ближе к валентной зоне, в n-типа ближе к зоне проводимости (работа выхода из р-полупроводника А2 всегда превышает работу выхода из n-полупроводника А1).

https://pandia.ru/text/78/022/images/image006_62.gif" width="12" height="221">Вольт-амперная характеристика неосвещенного р - n-перехода представлена на рис. 3 (кривая 2). Она описывается выражением где JS – ток насыщения неосвещенного р - n-перехода; k – постоянная Больцмана; е – заряд электрона; Т – температура; U – внешнее напряжение. Знак «» относится соответст-

венно к прямому или обратному нап-

равлению внешнего поля.

Если освещать фотоэлемент со стороны р-области, то фотоны света, поглощаясь в тонком поверхностном слое полупроводника, будут передавать свою энергию электронам валентной зоны и переводить их в зону проводимости, тем самым образуя в полупроводнике свободные электроны и дырки (фотоэлектроны и фотодырки) в равных количествах. Образованные в р-области фотоэлектроны являются здесь неосновными носителями. Двигаясь по кристаллу, они частично рекомбинируют с дырками. Но если толщина р-области мала, то значительная часть их доходит до р - n-перехода и переходит в n-область полупроводника, образуя фототок Jф, текущий в обратном направлении. Фотодырки так же, как и собственные дырки, не могут проникнуть в n-область, так как для этого они должны преодолеть потенциальный барьер в области р - n-перехода. Таким образом, р - n-переход разделяет фотоэлектроны и фотодырки.

Если цепь разомкнута, то фотоэлектроны, перешедшие в n-область, создают там избыточную по отношению к равновесной концентрацию электронов, тем самым заряжая эту часть полупроводника отрицательно. Фотодырки заряжают р-область положительно. Между обеими частями полупроводника возникает разность потенциалов, которую называют фото-ЭДС. Возникшая фото-ЭДС приложена к р - n-переходу в прямом (пропускном) направлении, поэтому высота потенциального барьера соответственно уменьшается. Это в свою очередь вызывает появление так называемого тока утечки Jу, текущего в прямом направлении. Величина фото-ЭДС растет до тех пор, пока возрастающий ток основных носителей не скомпенсирует фототок.

Если замкнуть р - n-переход на нагрузочное сопротивление rн (рис. 4), по цепи пойдет ток J, который можно представить как сумму двух токов:


J = Jф – Jу. (2)

Ток утечки Jу рассчитывается по формуле (1) для неосвещенного р - n- перехода, когда к нему приложено внешнее напряжение Uн = J rн в прямом направлении:

https://pandia.ru/text/78/022/images/image012_31.gif" width="25" height="28 src=">~ Ф. (3)

В режиме холостого хода цепь разомкнута (rн = https://pandia.ru/text/78/022/images/image014_26.gif" width="147" height="57 src=">, (4)

откуда следует, что

https://pandia.ru/text/78/022/images/image013_28.gif" width="19" height="15 src=">). При изменении внешней нагрузки от 0 до получаем участок ав , который и представляет собой собственно вольт-амперную характеристику р - n-перехода в фотогальваническом режиме при постоянном световом потоке. Участок вс характеризует работу фотоэлемента при подаче на р - n-переход прямого внешнего напряжения, участок а d – обратного внешнего напряжения (фотодиодный режим работы).

При изменении светового потока вольт-амперные характеристики смещаются, форма их изменяется. Семейство вольт-амперных характеристик вентильного фотоэлемента в фотогальваническом режиме при различных освещенностях представлено на рис. 5.

https://pandia.ru/text/78/022/images/image017_20.gif" width="231" height="12">

Прямые, проведенные из начала координат под углом α, определяемым величиной сопротивления нагрузки (ctg α = rн), пересекают характеристику в точках, абсциссы которых дают падение напряжения на нагрузке, а ординаты – ток во внешней цепи (U1 = J1 r1). Площадь, заштрихованная на рисунке, пропорциональна мощности Р1, выделяемой на нагрузке rн1:

https://pandia.ru/text/78/022/images/image020_15.gif" width="136" height="52 src=">, (7)

где https://pandia.ru/text/78/022/images/image022_14.gif" height="50">.gif" width="12">

https://pandia.ru/text/78/022/images/image026_13.gif" width="21" height="12">
https://pandia.ru/text/78/022/images/image031_11.gif" width="12" height="31"> кремния n-типа, вырезанную из монокристалла, на поверхности которой путем прогрева при температуре ~ 1200 0С в парах ВСl3 сформирована тонкая пленка 2 кремния р-типа. Контакт внешней цепи с р-областью осуществляется через металлическую полоску 3 , напыленную на ее поверхность. Для создания контакта 4 с n-областью часть наружной пленки сошлифовывается.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1. Снятие вольт-амперной характеристики вентильного фотоэлемента

1. Изучив данное методическое пособие, внимательно ознакомиться с установкой.

2. Изменяя сопротивление rн от 10 до 900 Ом, при постоянной освещенности снять 8 – 10 значений напряжения и тока, (расстояние от источника света до фотоэлемента l = 5 см).

3. Повторить выполнение п. 2 для l = 10 и 15 см.

4. Построить семейство вольт-амперных характеристик.

Задание 2. Исследование вольт-амперных характеристик вентильного фотоэлемента

1. Для каждой освещенности из соответствующей вольт-амперной характеристики определить максимальную мощность фототока Рmax и для этого случая по формуле (7) рассчитать КПД фотоэлемента. Освещенность Е вычисляется через силу света Jл источника и расстояние l по формуле .

2. Зная Рmax для всех освещенностей, рассчитать по формуле (6) оптимальные нагрузочные сопротивления rн. опт. Построить график rн. опт = f(E).

3. Построить графики Jк. з = f(E) и Ux. x = f(E).

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чем заключается явление внутреннего фотоэффекта?

2. В чем состоит отличие полупроводника n-типа от полупроводника р-типа?

3. Как достигается нужный тип проводимости полупроводника?

4. Нарисуйте энергетическую схему полупроводников n - и р-типа.

5. Объясните механизм возникновения контактной разности потенциалов р - n-перехода.

6. Объясните механизм действия р - n-перехода как выпрямителя переменного тока.

7. Как устроен вентильный фотоэлемент?

8. Каково назначение вентильного фотоэлемента?

9. Можно ли вентильный фотоэлемент использовать в качестве детектора ионизирующих излучений?

10. Где находят применение вентильные фотоэлементы?

11. Каков механизм возникновения фото-ЭДС вентильного фотоэлемента?

12. Что такое уровень Ферми?

13. Назовите несколько причин сравнительно низкого КПД вентильных фотоэлементов.

14. Назовите преимущество вентильных фотоэлементов как источников электрической энергии перед другими, известными вам.

15. Каковы трудности широкого использования вентильных фотоэлементов? Перспективы.

СПИСОК ЛИТЕРАТУРЫ

1. Трофимова физики. М.: Высш. шк., 19с.

2. Лабораторный практикум по физике / Под ред. . М.: Высш. шк., 19с.

Различают фотоэффект внешний внутренний и вентильный. Внешним фотоэлектрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриков), а также в газах и отдельных атомах и молекулах (фото ионизация). Фотоэффект обнаружен (1887 году) Г. Герцем, наблюдавший усилие процесса разряда при облучении искрового промежутка ультрафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Два электрона (катод К из исследуемого металла и анод А в схеме Столетова применялось металлическая сетка) в вакуумной трубке подключены к батареи так, что с помощью потенциометра R можно изменять не только значения, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности не утратившие свое значения до нашего времени:

1. Наиболее эффективное воздействие оказывает ультрафиолетовое излучение.

2. Под воздействием света вещество теряет только отрицательные заряды.

Дж.Дж. Томас в 1898 г. Измерил уделы заряд испускаемых под воздействием света частиц (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырабатываются электроны.

Внутренний фотоэффект

Внутренний фотоэффект - это вызванный электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний свободные без вылета наружу. В результате концентрации носителей тока внутри тела увеличивается, что приводит к возникновения фотопроводимости (по повышения электропроводимости фотопроводника или диэлектрика при его освещении) или возникновению э.д.с.

Вентильный фотоэффект

Вентильный фотоэффект- возникает э.д.с (фото-э.д.с.) при освещении контакта двух разных полупроводников или полупроводника и металла(при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразования солнечной энергии в электрическую

Вольт-амперная характеристика фотоэффекта

Вольт-Амперная характеристика фотоэффекта - зависимость фототока I, образуемого потоком электронов, испускаемых катодом под действием тока от напряжения U между электродами. Такая зависимость, соответствующая двум различным освещенностям Е е катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока I нас - фототок насыщения - определяется таким значением U, при котором все электроны испускаемые катодом, достигают анода.

Из вольта-амперной характеристики следует, что при U=0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того что бы фототок стал равным нулю необходимо приложить задерживающие напряжение U 0 . При U= U 0 ни один из электронов даже обладающий при вылете из катода максимальной скоростью v max , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

Где n - число электронов испускаемое катодом в 1с.

mv 2 max /2= e U 0

т.е. измерив сдерживающиеся напряжение U0, можно определить максимальное значения скорости и кинетической энергии фотоэлектронов.

При излучении вольт-амперных характеристик разнообразных материалов (важна частота поверхности, поэтому измерение проводятся в вакууме и на свежих поверхностях) при различных частотах падающего на катод излучения и различных энергетических освещенностях катода и обобщения полученных данных были установлены следующие три закона внешнего фотоэффекта.

Фотоэффект вентильный

Анимация

Описание

Вентильный (барьерный) фотоэффект возникает в неоднородных (по химическому составу или неоднородно легированных примесями) полупроводниках, а также у контакта полупроводник-металл. В области неоднородности существует внутреннее электрическое поле, которое ускоряет генерируемые излучением неосновные неравновесные носители. В результате фотоносители разных знаков пространственно разделяются. Вентильная фотоэдс может возникать под действием света генерирующего неосновные носители. Особенно важна вентильная фотоэдс в p-n- переходе и гетеропереходе, т.е. в контакте двух различных по химическому составу полупроводников.

На рис. 1 схематически показано разделение пар, возникающее при освещении p-n- перехода.

Разделение возбуждаемых светом электронно-дырочных пар на p-n переходе

Рис. 1

Вклад в ток дают как носители, генерируемые непосредственно в области p-n - перехода, так и возбуждаемые в припереходных областях и достигающие области сильного поля путем диффузии. В результате разделения пар образуется поправленный поток электронов в n - область и дырок в p - область. При разомкнутой цепи создается ЭДС в пропускном (прямом) направлении p-n - перехода, компенсирующая этот ток.

В зависимости от легирования обеих сторон гетероперехода можно создать p-n - гетеропереход (анизотипный) и n-n - гетеропереход или p-p - гетеропереход (изотипный).

Комбинация различных гетеропереходов и монопереходов образует те или иные гетероструктуры.

Наиболее широко применяются монокристаллические гетеропереходы между полупроводниковыми материалами на основе арсенидов, фосфидов и антимонидов Ga и Al, благодаря близости их ковалентных радиусов.

Фотоэлементы на p-n - переходах или гетеропереходах обладают малой инерционностью и обеспечивают прямое преобразование световой энергии в электрическую.

Временные характеристики

Время инициации (log to от -3 до -1);

Время существования (log tc от -1 до 7);

Время деградации (log td от -3 до -1);

Время оптимального проявления (log tk от 0 до 6).

Диаграмма:

Технические реализации эффекта

Стандартный фотодиод (лучше с большой приемной площадкой, типа Ф24К или подобный) присоединяется ко входу осциллографа и освещается светом от люминесцентной лампы. Наблюдаем осциллирующую с двойной сетевой частотой (то есть100 Гц) ЭДС.

Применение эффекта

Вентильный (барьерный) фотоэффект используется в фотовольтаических и солнечных элементах, а также в приборах выявления неоднородностей полупроводниковых материалов и фотоприемниках для измерения световых потоков.

Солнечная батарея (фотоэлектрический генератор) - устройство, непосредственно-преобразующее энергию светового излучения в электрическую энергию. Электрический ток в солнечной батарее возникает в результате процессов, происходящих в фотоэлементах при попадании на них солнечного излучения. Наиболее эффективны солнечные батареи, основанные на возбуждении ЭДС на границе между проводником и светочувствительным полупроводником (например, кремнием) или между разнородными проводниками. Мощность солнечной батареи достигает 100 КВт, КПД - 10ё 20 %.

ВАКУУМНЫЙ ФОТОЭЛЕМЕНТ

Простейший тип вакуумного фотоэлемента, действие которого основано на внешнем фотоэффекте, изображен на рисунке 6. Он представляет собой небольшой откачанный стеклянный баллон, одна половина которого покрыта изнутри чувствительным слоем. В зависимости от того, для какой спектральной области предназначен фотоэлемент, употребляют разные слои: серебряный, калиевый, цезиевый, сурьмяно-цезиевый и т.д. Этот слой служит катодом К. Анод обычно берется в виде кольца А. Между катодом и анодом с помощью батареи возбуждается разность потенциалов. При отсутствии освещения в цепи фотоэлемента тока нет. При попадании света на катод в цепи

возникает ток. Для увеличения чувствительности фотоэлемента его наполняют каким-либо инертным газом при небольшом давлении.

ВЕНТИЛЬНЫЙ ФОТОЭФФЕКТ

Фотоэлементы, основанные на фотоэффекте в запирающем слое, так называемом вентильном фотоэффекте, непосредственно превращают падающую на них лучистую энергию в электрическую, являясь, таким образом, генераторами электрической энергии, хотя очень малой мощности. Они не нуждаются в источнике внешнего напряжения, как фотоэлементы с внешним и внутренним фотоэффектом.

Возникновение вентильного фотоэффекта наблюдается в системах, состоящих из контактирующих друг с другом электронного и дырочного полупроводников. В этом случае на границе двух полупроводников с различными

механизмами проводимости возникает так называемый р-п переход вследствие взаимного проникновения основных носителей. Электрическое поле в этом слое направлено так, что противодействует дальнейшему переходу через слой основных носителей и способствует движению неосновных носителей (см. рис. 7). В результате установится равновесие I 0 = I н и тока через контакт не будет.

При освещении р -полупроводника светом освобождаются электроны и дырки. Освобождённые носители перемещаются из области, где они созданы и имеются в повышенном количестве, к местам, где их мало. Если расстояние от освещаемой поверхности до р-п перехода мало, все электроны, генерируемые светом, будут переходить в п -область. Дырки же, напротив, будут задерживаться контактным

полем и оставаться р -области. Происходит накопление основных носителей тока. Теперь I 0 не равно I н, т.е. через р-п переход в запорном направлении пойдет ток, который на сопротивлении р-п перехода создает разность потенциалов, уменьшая контактную разность потенциалов. Этот фототок равен I ф =en , где е - заряд электрона, n - число электронов (число пар), создаваемых светом в одну секунду. Параллельно с ростом концентрации носителей тока возрастает создаваемое ими электрическое поле, которое препятствует их дальнейшему переходу через запирающий слой. В некоторый момент наступает динамическое равновесие, т.е. число перемещающихся неосновных носителей тока через запирающий слой будет одинаковым в одном и другом направлениях, и между электродами устанавливается некоторая разность потенциалов, так называемая электродвижущая сила.

Основными изучаемыми характеристиками вентильных фотоэлементов являются вольтамперные, световые и спектральные характеристики.

Вольтамперные характеристики представляют собой зависимость фототока I Ф,генерируемого освещённым фотоэлементом, от приложенного напряжения U при включении его на различные нагрузочные сопротивления R (см. рис. 8). Точки пересечения вольтамперной характеристики с осью абсцисс дают электродвижущую силу фотоэлемента, а с осью ординат - величину тока короткого замыкания. Ток короткого замыкания пропорционален силе падающего света, а э.д.с. будет стремиться к насыщению при изменении освещённости фотоэлемента. Током короткого замыкания обычно определяется чувствительность фотоэлементов. Различают интегральную и спектральную светимость.

Интегральная чувствительность фотоэлемента г u - это отношение фототока короткого замыкания I к к падающему световому потоку белого света Ф:

Спектральная чувствительность - это отношение тока короткого замыкания I к к световому потоку монохроматического излучения Ф л с длиной волны л:

фотоэлектрический вакуумный вольтамперный вентильный

Характерно, что чувствительность резко зависит от спектрального состава излучения.

Спектральные характеристики выражают зависимость силы фототока на единицу энергии от длины волны падающего света. В большинстве случаев спектральная характеристика имеет один ярко выраженный максимум (см. рис. 9). Наиболее близкими по спектральной характеристике к человеческому глазу являются селеновые фотоэлементы, у которых максимум приходится на длину волны 0.59 мк.

Световые характеристики вентильных фотоэлементов выражают зависимость силы фототока (или - фотоэлектродвижущей силы) от величины падающего светового потока Ф. Эти зависимости отступают от линейности тем более заметно, чем больше величина сопротивления внешней цепи. Так из рисунка 10 видно, что с увеличением интенсивности светового потока величина фотоэдс возрастает, достигая насыщения при больших освещённостях.

Структура вентильного фотоэлемента схематически изображена на рисунке 11. Кристаллический селен (слой 3), из которого состоит основной слой полупроводника в селеновых фотоэлементах, имеет дырочную проводимость. На него наносится полупрозрачный слой металла (слой 1), атомы которого диффундируют в селен, поэтому приповерхностный слой селена приобретает электронную проводимость (слой 2). Свет, проходя через полупрозрачный слой металла 1 и тонкий запирающий слой 2, попадает в основной полупроводник 3, но не проникает глубоко вследствие поглощения. Возникающая фотоэдс снимается с металлических электродов 1 и 4.

Фотоэффект (как внешний, так и внутренний) используется в фотоэлектронных приборах (фотоэлементы, фотодиоды, фотосопротивления, фотоэлектронные умножители), получивших разнообразные применения в науке и технике (в телевидении, космической технике).

Похожие статьи

  • Как приготовить молоки лососевых

    Молоки рыбы – это очень ценный продукт, богатый жирными аминокислотами. Европейцы игнорируют его, считают неприемлемым кушать его по эстетическим причинам, а японцы и русские, напротив, с удовольствием едят репродуктивные железы рыб. А вы...

  • Лучшие рецепты из баклажан

    В конце лета и начале осени многие задаются вопросом - как поинтересней приготовить баклажаны, чтобы и сразу побаловать близких вкуснейшими блюдами и зимой удивить заготовкой. Покупая баклажаны, или, как их часто называют, синенькие , не...

  • Пневмоперитонеум — метод коллапсотерапии туберкулеза легких

    Призодящего к перфорации стенки желудка или кишечника (прободной П.), а также накладывается искусственно с диагностической (диагностический П.) или лечебной (лечебный П.) целью. Прободной П. чаще всего является следствием перфорации язвы...

  • Фенольные гидроксильные группы и антиоксидантная активность

    Одноатомные фенолы (аренолы). Номенклатура. Изомерия. Способы получения. Физические свойства и строение. Химические свойства: кислотность, образование фенолятов , простых и сложных эфиров; нуклеофильное замещение гидроксильной группы;...

  • Джонни депп обанкротился по вине родной сестры

    Джон Кристофер (Джонни) Депп II (англ. John Christopher «Johnny» Depp II) — американский актер, кинорежиссер, музыкант, сценарист и продюсер. Прославился ролями у Тима Бертона, начиная с «Эдвард Руки-ножницы». Также заметные фильмы на...

  • Краткая история советского супа Щи из кислой капусты

    Осенью на смену летним холодным супам приходят наваристые первые блюда. Их главная задача — согреть организм и зарядить его энергией. Горячие супы хороши тем, что в теплом виде полезные вещества лучше и быстрее усваиваются организмом....